
Fundamenta Informaticae ISSUE 1001–1047 1001

IOS Press

Untyped Algorithmic Equality for Martin-L öf’s Logical Framework
with Surjective Pairs
(Draft of December 30, 2005)

Andreas Abel∗ C

Institut für Informatik, Ludwigs-Maximilians-Universität München

abel@informatik.uni-muenchen.de

Thierry Coquand∗

Department of Computer Science, Chalmers University of Technology

coquand@cs.chalmers.se

Abstract. Martin-Löf’s Logical Framework is extended by strongΣ-types and presented via judg-
mental equality with rules for extensionality and surjective pairing. Soundness of the framework
rules is proven via a generic PER model on untyped terms. An algorithmic version of the framework
is given through an untypedβη-equality test and a bidirectional type checking algorithm. Complete-
ness is proven by instantiating the PER model withη-equality onβ-normal forms, which is shown
equivalent to the algorithmic equality.

1. Introduction

Type checking in dependent type theories requires comparison of expressions for equality. In theories
with β-equality, an apparent method is to normalize the objects and then compare theirβ-normal forms
syntactically. In the theory we want to consider, an extension of Martin-Löf’s logical framework with
βη-equality by dependent surjective pairs (strongΣ types), which we callMLFΣ, a naivenormalize
and compare syntacticallyapproach fails sinceβη-reduction with surjective pairing is known to be non-
confluent [15]. Furthermore, the surjective-pairing reduction does not preserve types.

∗Research supported by the coordination actionTYPES(510996) and thematic networkApplied Semantics II(IST-2001-38957)
of the European Union and the projectCoverof the Swedish Foundation of Strategic Research (SSF).
CCorresponding author

1002 A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing

We therefore advocate the incrementalβη-convertibility test which has been given by the second
author for dependently typedλ-terms [6], and extend it to pairs. The algorithm computes the weak head
normal forms of the conversion candidates, and then analyzes the shape of the normal forms. In case the
head symbols do not match, conversion fails early. Otherwise, the subterms are recursively weak head
normalized and compared. There are two flavors of this algorithm.

Type-directed conversion. In this style, the type of the two candidates dictates the next step in the
algorithm. If the candidates are of function type, both are applied to a fresh variable, if they are of
pair type, their left and right projections are recursively compared, and if they are of base type, they are
compared structurally, i. e., their head symbols and subterms are compared. Type-directed conversion
has been investigated by Harper and Pfenning [13]. The advantage of this approach is that it can handle
cases where the type provides extra information which is not present already in the shape of terms.
An example is the unit type: any two terms of unit type, e. g., two variables, can be considered equal.
Harper and Pfenning report difficulties in showing transitivity of the conversion algorithm, in case of
dependent types. To circumvent this problem, they erase the dependencies and obtain simple types to
direct the equality algorithm. In the theory they consider, the Edinburgh Logical Framework [12], erasure
is sound, but in theories with types defined by cases (large eliminations), erasure is unsound and it is not
clear how to make their method work. In this article, we investigate an alternative approach.

Shape-directed (untyped) conversion. As the name suggests, the shape of the candidates directs the
next step. If one of the objects is aλ-abstraction, both objects are applied to a fresh variable, if one object
is a pair, the algorithm continues with the left and right projections of the candidates, and otherwise, they
are compared structurally. Since the algorithm does not depend on types, it is in principle applicable to
many type theories with functions and pairs. In this article, we prove it complete forMLFΣ, but since we
are not using erasure, we expect the proof to extend to theories with large eliminations.

Main technical contributions of this article.

1. We extend the untyped type-checking algorithm of the second author [6] to a type system with
Σ-types and surjective pairing. Recall that reduction in the untypedλ-calculus with surjective
pairing is not Church-Rosser [3] and, thus, one cannot use a presentation of this type system with
conversion defined on raw terms.1

2. We take a modular approach for showing the completeness of the conversion algorithm. This result
is obtained using a special instance of a general PER model construction. Furthermore this special
instance can be describeda priori without references to the typing rules.

Contents. We start with a syntactical description ofMLFΣ, in the style of equality-as-judgement (Sec-
tion 2). Then, we give an untyped algorithm to checkβη-equality of two expressions, which alternates
weak head reduction and comparison phases, plus a bidirectional type checking algorithm for normal
terms (Section 3). The goal of this article is to show that the algorithmic presentation ofMLFΣ is equiv-
alent to the declarative one. Soundness is proven rather directly in Section 4, requiring inversion for

1In the absence of confluence, one cannot show injectivity of type constructors, hence subject reduction fails.

A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing 1003

the typing judgement in order to establish subject reduction for weak head evaluation. Completeness,
which implies decidability ofMLFΣ, requires construction of a model. Before giving a specific model,
we describe a class of PER (partial equivalence relation) models ofMLFΣ based on a generic model of
theλ-calculus with pairs (Section 5). In Section 6 we turn to the specific model of expressions modulo
β-equality and show thatη-equality ofβ-normal forms is a partial equivalence, hence, gives rise to a
PER model. In Section 7 we give a proof thatη-equivalence is decided by the algorithmic equality which
implies that the algorithmic equality serves as basis for a PER model as well. This entails completeness
of the algorithm. We could have done a more direct proof, without the intermediate model involving
η-equality, and this (rather technical) path is taken in Section 8. Decidability of judgmental equality on
well-typed terms inMLFΣ ensues, which entails that type checking of normal forms is decidable as well
(Section 9).

2. Declarative Presentation ofMLFΣ

This section presents the typing and equality rules for an extension of Martin-Löf’s logical framework
[16] by dependent pairs. We show some standard properties like weakening and substitution, as well
as injectivity of function and pair types and inversion of typing, which will be crucial for the further
development.

Expressions (terms and types). We do not distinguish between terms and types syntactically. Depen-
dent function types, usually writtenΠx :A.B, are writtenFun A (λxB); similarly, dependent pair types
Σx :A.B are represented byPair A (λxB). We write projectionsL andR postfix. The syntactic entities
of MLFΣ are given by the following grammar.

Var 3 x, y, z variables

Const 3 c ::= Fun | Pair | El | Set constants

Proj 3 p ::= L | R left and right projection

Exp 3 r, s, t ::= c | x | λxt | r s | (t, t′) | r p expressions

Ty 3 A,B, C ::= Set | El t | Fun A (λxB) | Pair A (λxB) types

Cxt 3 Γ ::= � | Γ, x :A typing contexts

TypesTy ⊆ Exp are distinguished expressions. We identify terms and types up toα-conversion and
adopt the convention that in contextsΓ, all variables must be distinct; hence, the context extension
Γ, x :A presupposes(x :B) 6∈ Γ for anyB.

The inhabitants ofSet are type codes;El maps type codes to types. E. g.,Fun Set (λa. Fun (El a) (λ .El a))
is the type of the polymorphic identityλaλxx.

1004 A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing

Wellformed contextsΓ ` ok.

CXT-EMPTY
� ` ok

CXT-EXT
Γ ` A :Type

Γ, x :A ` ok

TypingΓ ` t : A.

HYP
Γ ` ok (x :A) ∈ Γ

Γ ` x : A
CONV

Γ ` t : A Γ ` A = B :Type

Γ ` t : B

SET-F
Γ ` ok

Γ ` Set :Type
SET-E

Γ ` t : Set

Γ ` El t :Type

FUN-F
Γ, x :A ` B :Type

Γ ` Fun A (λxB) :Type

FUN-I
Γ, x :A ` t : B

Γ ` λxt : Fun A (λxB)
FUN-E

Γ ` r : Fun A (λxB) Γ ` s : A

Γ ` r s : B[s/x]

PAIR-F
Γ, x :A ` B :Type

Γ ` Pair A (λxB) :Type
PAIR-I

Γ ` s : A Γ ` t : B[s/x]
Γ ` (s, t) : Pair A (λxB)

PAIR-E-L
Γ ` r : Pair A (λxB)

Γ ` r L : A
PAIR-E-R

Γ ` r : Pair A (λxB)
Γ ` r R : B[r L/x]

Figure 1. MLFΣ rules for contexts and typing.

A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing 1005

Judgements are inductively defined relations. IfD is a derivation of judgementJ , we writeD :: J .
The type theoryMLFΣ is presented via five judgements:

Γ ` ok Γ is a well-formed context

Γ ` A :Type A is a well-formed type

Γ ` t : A t has typeA

Γ ` A = A′ :Type A andA′ are equal types

Γ ` t = t′ : A t andt′ are equal terms of typeA

Typing and well-formedness of types both have the formΓ ` : . We will refer to them by the
same judgementΓ ` t : A. If we mean typing only, we will requireA 6≡Type. The same applies to the
equality judgements. Typing rules are given in Figure 1, together with the rules for well-formed contexts.
The rules for the equality judgements are given in Figure 2.

Remark 2.1. (Subject reduction fails)
In the contextz : Pair A (λxB), theη-redex(z L, z R) can be given the non-dependent typePair A (λ .B[z L/x]),
but the reductz not. A closer analysis of this problem leads us to rulePAIR-I: the types ofs andt do
not determine the type of(s, t). If the terms appears inB[s/x], then there are at least two different
expressionsB1 andB2 such thatB1[s/x] ≡ B2[s/x] ≡ B[s/x], which lead to different types of(s, t).

For the remainder of this section we present properties ofMLFΣ which have easy syntactical proofs.
In this, we follow roughly the path outlined by Harper and Pfenning [13]. However, there is a metho-
dological difference: In all judgementsΓ ` J , we presupposeΓ ` ok, which is not true for Harper and
Pfenning’s presentation of the logical framework.

Lemma 2.1. (Admissible rules)
1. Reflexivity: IfD :: Γ ` t : A thenΓ ` t = t : A.

2. Weakening: IfD :: Γ,Γ′ ` J and bothΓ ` A : Type and(x : B) 6∈ (Γ,Γ′) for any B, then
Γ, x :A,Γ′ ` J .

3. Syntactic validity of hypotheses: IfD :: Γ ` J and(x :A) ∈ Γ thenD′ :: Γ ` A :Type and the
derivationD′ is shorter thanD.

4. Context conversion: IfD :: Γ, x :A, Γ′ ` J andΓ ` A = B :Type thenΓ, x :B, Γ′ ` J .

5. Substitution: IfD :: Γ, x :A,Γ′ ` J andΓ ` s : A thenΓ,Γ′[s/x] ` J [s/x].

Proof:
Each by induction onD. Syntactic validity of hypotheses requires weakening in caseCXT-EXT. Substi-
tution requires weakening in caseEQ-HYP. The only interesting case for context conversion isEQ-HYP,
which needs an application ofEQ-CONV. ut

Lemma 2.2. (Inversion for types)
1. If D :: Γ ` El t :Type thenD′ :: Γ ` t : Set.

1006 A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing

Equivalence, hypotheses, conversion.

EQ-SYM
Γ ` t = t′ : A

Γ ` t′ = t : A
EQ-TRANS

Γ ` r = s : A Γ ` s = t : A

Γ ` r = t : A

EQ-HYP
Γ ` ok (x :A) ∈ Γ

Γ ` x = x : A
EQ-CONV

Γ ` t = t′ : A Γ ` A = B :Type

Γ ` t = t′ : B

Sets.

EQ-SET-F
Γ ` ok

Γ ` Set = Set :Type
EQ-SET-E

Γ ` t = t′ : Set

Γ ` El t = El t′ :Type

Dependent functions.

EQ-FUN-F
Γ ` A = A′ :Type Γ, x :A ` B = B′ :Type

Γ ` Fun A (λxB) = Fun A′ (λxB′) :Type

EQ-FUN-I
Γ, x :A ` t = t′ : B

Γ ` λxt = λxt′ : Fun A (λxB)

EQ-FUN-E
Γ ` r = r′ : Fun A (λxB) Γ ` s = s′ : A

Γ ` r s = r′ s′ : B[s/x]

EQ-FUN-β
Γ, x :A ` t : B Γ ` s : A

Γ ` (λxt) s = t[s/x] : B[s/x]

EQ-FUN-η
Γ ` t : Fun A (λxB)

Γ ` (λx. t x) = t : Fun A (λxB)
x 6∈ FV(t)

Dependent pairs.

EQ-PAIR-F
Γ ` A = A′ :Type Γ, x :A ` B = B′ :Type

Γ ` Pair A (λxB) = Pair A′ (λxB′) :Type

EQ-PAIR-I
Γ ` s = s′ : A Γ ` t = t′ : B[s/x]

Γ ` (s, t) = (s′, t′) : Pair A (λxB)

EQ-PAIR-E-L
Γ ` r = r′ : Pair A (λxB)

Γ ` r L = r′ L : A
EQ-PAIR-E-R

Γ ` r = r′ : Pair A (λxB)
Γ ` r R = r′ R : B[r L/x]

EQ-PAIR-β-L
Γ ` s : A Γ ` t : B

Γ ` (s, t) L = s : A
EQ-PAIR-β-R

Γ ` s : A Γ ` t : B

Γ ` (s, t) R = t : B

EQ-PAIR-η
Γ ` r : Pair A (λxB)

Γ ` (r L, r R) = r : Pair A (λxB)

Figure 2. MLFΣ equality rules.

A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing 1007

2. Letc ∈ {Fun,Pair}. If D :: Γ ` cA (λxB) :Type thenD1 :: Γ ` A :Type andD2 :: Γ, x :A `
B :Type.

In all cases, the derivationsD′,D1, andD2 are shorter thanD.

Proof:
By cases onD, using syntactic validity of hypotheses (2.1.3) for part 2. ut
Lemma 2.3. (Functionality for typing)
Let Γ ` s = s′ : A andΓ ` s : A. If D :: Γ, x : A, Γ′ ` t : C thenΓ,Γ′[s/x] ` t[s/x] = t[s′/x] :
C[s/x].

Proof:
By induction onD. We spell out some cases:

• In the case of an hypothesis rule, we haveΓ, x : A, Γ′ ` ok, hence, by the substitution lemma,
Γ,Γ′[s/x] ` ok. We consider the following subcases:

– The used hypothesis isx : A. Since all types inΓ′[s/x] are wellformed, we can iteratively
weaken the assumption of this lemma to obtain the desiredΓ,Γ′[s/x] ` s = s′ : A. Note
thatA ≡ A[s/x] sincex cannot be free inA.

– The used hypothesis is(y :B) ∈ Γ. Thenx cannot be free inB andΓ,Γ′[s/x] ` y = y : B
is an instance of ruleEQ-HYP.

– The used hypothesis is(y : B) ∈ Γ′. Then(y : B[s/x]) ∈ Γ′[s/x] and we can again use
EQ-HYP.

• Case:

CONV
Γ, x :A,Γ′ ` t : B Γ, x :A,Γ′ ` B = C :Type

Γ, x :A,Γ′ ` t : C

Γ,Γ′[s/x] ` t[s/x] = t[s′/x] : B[s/x] induction hypothesis

Γ ` s : A assumption

Γ,Γ′[s/x] ` B[s/x] = C[s/x] :Type substitution lemma

Γ,Γ′[s/x] ` t[s/x] = t[s′/x] : C[s/x] rule EQ-CONV

• Case:
D :: Γ, x :A,Γ′ ` Fun B λyC :Type

D1 :: Γ, x :A, Γ′ ` B :Type inversion for types

Γ,Γ′[s/x] ` B[s/x] = B[s′/x] :Type ind. hyp.(D1 < D)
D2 :: Γ, x :A, Γ′, y :B ` C :Type inversion for types

Γ,Γ′[s/x], y :B[s/x] ` C[s/x] = C[s′/x] :Type ind. hyp.(D2 < D)
Γ,Γ′[s/x] ` Fun (B[s/x]) λy. C[s/x]

= Fun (B[s′/x]) λy.C[s′/x] :Type rule EQ-FUN-F

Γ,Γ′[s/x] ` (Fun B λyC)[s/x] = (Fun B λyC)[s′/x] :Type properties of substitution

1008 A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing

• Case:

FUN-I
Γ, x :A,Γ′, y :B ` t : C

Γ, x :A,Γ′ ` λyt : Fun B λyC

Γ,Γ′[s/x], y :B[s/x] ` t[s/x] = t[s′/x] : C[s/x] induction hypothesis

Γ,Γ′[s/x] ` λy. t[s/x] = λy. t[s′/x] : Fun (B[s/x]) λy.C[s/x] rule EQ-FUN-I

Γ,Γ′[s/x] ` (λyt)[s/x] = (λyt)[s′/x] : (Fun B λyC)[s/x] properties of substitution

• Case:

PAIR-E-R
Γ, x :A, Γ′ ` r : Pair B λyC

Γ, x :A,Γ′ ` r R : C[r L/y]

Γ,Γ′[s/x] ` r[s/x] = r[s′/x] : Pair (B[s/x]) λy. C[s/x] induction hypothesis

Γ,Γ′[s/x] ` r R[s/x] = r R[s′/x] : (C[s/x])[(r[s/x] L)/y] rule EQ-PAIR-E-R

Γ,Γ′[s/x] ` r R[s/x] = r R[s′/x] : (C[r L/y])[s/x] properties of substitution

ut

Lemma 2.4. (Injectivity)
1. If D :: Γ ` Set = C :Type orD :: Γ ` C = Set :Type thenC ≡ Set.

2. If D :: Γ ` El t = C :Type orD :: Γ ` C = El t :Type thenC ≡ El t′ andΓ ` t = t′ : Set.

3. Letc ∈ {Fun,Pair}. If D :: Γ ` cA (λxB) = C :Type orD :: Γ ` C = cA (λxB) :Type then
C ≡ cA′ (λxB′) with Γ ` A = A′ :Type andΓ, x :A ` B = B′ :Type.

Proof:
By induction onD. Note that in Martin-L̈of’s LF, injectivity is almost trivial since computation is re-
stricted to the level of terms. This is also true for Harper and Pfenning’s version of the Edinburgh LF
which lacks type-levelλ-abstraction [13]. In the Edinburgh LF with type-levelλ it involves a normaliza-
tion argument and is proven using logical relations [20]. ut

Lemma 2.5. (Syntactic validity)
1. Typing: IfD :: Γ ` t : A thenΓ ` ok and eitherA ≡Type or Γ ` A :Type.

2. Equality: IfD :: Γ ` t = t′ : A thenΓ ` t : A, Γ ` t′ : A, and eitherA ≡Type or Γ ` A :Type.

Proof:
Simultaneously by induction onD. A few interesting cases are:

• Case:

CONV
Γ ` t : A Γ ` A = B :Type

Γ ` t : B

By induction hypothesis (2.),Γ ` B :Type.

A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing 1009

• Case:

PAIR-E-R
Γ ` r : Pair A (λxB)
Γ ` r R : B[r L/x]

By inversion (Lemma 2.2) on the induction hypothesis,Γ, x : A ` B : Type. Also, by rule
PAIR-E-L, Γ ` r L : A. Hence,Γ ` B[r L/x] :Type by substitution.

• Case:

EQ-FUN-F
Γ ` A = A′ :Type Γ, x :A ` B = B′ :Type

Γ ` Fun A (λxB) = Fun A′ (λxB′) :Type

By induction hypothesis,Γ ` A,A′ : Type and Γ, x : A ` B,B′ : Type. We infer Γ `
Fun A (λxB) : Type directly, by FUN-F, whereasΓ ` Fun A′ (λxB′) : Type follows only af-
ter we converted the type ofx in the context toA′.

• Case:

EQ-FUN-E
Γ ` r = r′ : Fun A (λxB) Γ ` s = s′ : A

Γ ` r s = r′ s′ : B[s/x]

Γ ` s, s′ : A induction hypothesis

Γ ` Fun A (λxB) :Type induction hypothesis

Γ, x :A ` B :Type inversion for types

Γ ` B[s/x] :Type substitution lemma

Γ ` B[s/x] = B[s′/x] :Type functionality for typing

Γ ` r, r′ : Fun A (λxB) induction hypothesis

Γ ` r s : B[s/x] rule FUN-E

Γ ` r′ s′ : B[s′/x] rule FUN-E

Γ ` r′ s′ : B[s/x] rulesEQ-SYM, CONV

• Case:

EQ-FUN-β
Γ, x :A ` t = t′ : B Γ ` s = s′ : A

Γ ` (λxt) s = t′[s′/x] : B[s/x]
By induction hypothesis,Γ ` s : A and Γ, x : A ` B : Type, hence we get the first goal
Γ ` B[s/x] : Type by the substitution lemma. By functionality for typing we also haveΓ `
B[s/x] = B[s′/x] :Type. Another induction hypothesis isΓ, x :A ` t : B from which we obtain
the second goalΓ ` t[s/x] : B[s/x] again by substitution. Using substitution on the induction
hypothesesΓ, x : A ` t′ : B andΓ ` s′ : A entailsΓ ` t′[s′/x] : B[s′/x] and we can use our
derived type equality withEQ-SYM andCONV to finally arrive atΓ ` t′[s′/x] : B[s/x].

• Case:

EQ-FUN-η
Γ ` t = t′ : Fun A (λxB)

Γ ` (λx. t x) = t′ : Fun A (λxB)
x 6∈ FV(t)

W. l. o. g., x is not bound by contextΓ. By induction hypothesis,Γ ` t, t′ : Fun A (λxB) and
Γ ` Fun A (λxB) :Type. By inversion for types,Γ ` A :Type, hence we can apply weakening
to obtainΓ, x :A ` t : Fun A (λxB). This entailsΓ ` λx. t x : Fun A (λxB).

1010 A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing

ut

Using syntactic validity, the functionality lemma (2.3) needs fewer hypotheses:

Corollary 2.1. (Functionality for typing)
If Γ ` s = s′ : A andΓ, x :A,Γ′ ` t : C thenΓ,Γ′[s/x] ` t[s/x] = t[s′/x] : C[s/x].

Lemma 2.6. (Functionality for equality)
If Γ, x :A,Γ′ ` t = t′ : C andΓ ` s = s′ : A thenΓ,Γ′[s/x] ` t[s/x] = t′[s′/x] : C[s/x].

Proof:
Direct (cf. Harper and Pfenning [13]).

Γ ` s : A syntactic validity

Γ,Γ[s/x] ` t[s/x] = t′[s/x] : C[s/x] substitution lemma

Γ, x :A,Γ′ ` t′ : C syntactic validity

Γ,Γ[s/x] ` t′[s/x] = t′[s′/x] : C[s/x] functionality for typing

Γ,Γ[s/x] ` t[s/x] = t′[s′/x] : C[s/x] rule EQ-TRANS

ut

Lemma 2.7. (Inversion of Typing)
Let C 6≡Type.

1. If D :: Γ ` x : C thenΓ ` Γ(x) = C :Type.

2. If D :: Γ ` λxt : C thenC ≡ Fun A (λxB) andΓ, x :A ` t : B.

3. If D :: Γ ` r s : C thenΓ ` r : Fun A (λxB) with Γ ` s : A andΓ ` B[s/x] = C :Type.

4. If D :: Γ ` (r, s) : C thenC ≡ Pair A (λxB) with Γ ` r : A andΓ ` s : B[r/x].

5. If D :: Γ ` rL : A thenΓ ` r : Pair A (λxB).

6. If D :: Γ ` rR : C thenΓ ` r : Pair A (λxB) andΓ ` B[rL/x] = C :Type.

Proof:
By induction onD. For each shape of termt in Γ ` t : C, there are two matching rules. One is the
introduction resp. elimination rule fittingt, which entails the inversion property trivially. The other one
is ruleCONV:

• Case:

CONV
Γ ` λxt : C Γ ` C = C ′ :Type

Γ ` λxt : C ′

By induction hypothesisC ≡ Fun A (λxB) and Γ, x : A ` t : B. By injectivity, C ′ ≡
Fun A′ (λxB′) with Γ ` A = A′ : Type andΓ, x : A ` B = B′ : Type. By conversion and
context conversion we concludeΓ, x :A′ ` t : B′.

A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing 1011

• Case:

CONV
Γ ` r s : C Γ ` C = C ′ :Type

Γ ` r s : C ′

By induction hypothesisΓ ` r : Fun A (λxB) for someA,B with Γ ` s : A andΓ ` B[s/x] =
C :Type. We inferΓ ` B[s/x] = C ′ :Type by transitivity.

• Case:

CONV
Γ ` r L : A Γ ` A = A′ :Type

Γ ` r L : A′

By induction hypothesis,Γ ` r : Pair A (λxB). Syntactic validity (Lemma 2.5), inversion for
types (Lemma 2.2), and reflexivity entailΓ, x :A ` B = B :Type, hence,Γ ` Pair A (λxB) =
Pair A′ (λxB) :Type by ruleEQ-PAIR-F. The desiredΓ ` r : Pair A′ (λxB) follows by CONV.

ut

Remark 2.2. (Weaker inversion property for left projection)
The statement “ifΓ ` rL : C thenΓ ` r : Pair A (λxB) andΓ ` A = C :Type” can be proven without
reference to syntactic validity.

3. Algorithmic Presentation

In this section, we present algorithms for deciding equality and for type-checking. The goal of this article
is to show these algorithms sound and complete.

Syntactic classes. The algorithms work on weak head normal formsWVal. For convenience, we intro-
duce separate categories for normal forms which can denote a function and for those which can denote a
pair. In the intersection of these categories live the neutral expressions.

WElim 3 e ::= s | p eliminations

WNe 3 n ::= c | x | n e neutral expressions

WFun 3 wf ::= n | λxt weak head function values

WPair 3 wp ::= n | (t, t′) weak head pair values

WVal 3 w ::= wf | wp weak head values

Note that typesA ∈ Ty ⊆WNe are always neutral weak head values.

Weak head evaluation. We define simultaneously two judgements:

↘ ⊆ Exp×WVal

@ ↘ ⊆ WVal×WElim×WVal

1012 A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing

Weak head evaluationt↘ w.

EVAL -C
c↘ c

EVAL -VAR
x↘ x

EVAL -FUN-I
λxt↘ λxt

EVAL -FUN-E
r ↘ wf wf@s↘ w

r s↘ w

EVAL -PAIR-I
(t, t′)↘ (t, t′)

EVAL -PAIR-E
r ↘ wp wp@p↘ w

r p↘ w

Active eliminationw@e↘ w′.

ELIM -NE
n@e↘ n e

ELIM -FUN
t[s/x]↘ w

(λxt)@s↘ w

ELIM -PAIR-L
t↘ w

(t, t′)@L↘ w
ELIM -PAIR-R

t′ ↘ w

(t, t′)@R↘ w

Weak head evaluationt↘ w is equivalent to multi-step weak head reduction to normal form.

Conversion. Two termst, t′ are algorithmically equalif t ↘ w, t′ ↘ w′, andw ∼ w′ for some
w,w′. We combine these three propositions tot↓ ∼ t′↓. Similarly, t@e ∼ t′@e′ shall denotet@e↘ w,
t′@e′ ↘ w′, andw ∼ w′. The algorithmic equality on weak head normal formsw ∼ w′ is given
inductively by the following rules:

AQ-C
c ∼ c

AQ-VAR
x ∼ x

AQ-NE-FUN
n ∼ n′ s↓ ∼ s′↓

n s ∼ n′ s′
AQ-NE-PAIR

n ∼ n′

n p ∼ n′ p

AQ-EXT-FUN
wf@x ∼ w′

f@x

wf ∼ w′
f

x 6∈ FV(wf , w′
f)

AQ-EXT-PAIR
wp@L ∼ w′

p@L wp@R ∼ w′
p@R

wp ∼ w′
p

For two neutral values, the rules (AQ-NE-X) are preferred overAQ-EXT-FUN andAQ-EXT-PAIR. Thus,
conversion is deterministic. It is easy to see that it is symmetric as well.

In our presentation, untyped conversion resembles type-directed conversion. In the terminology
of Harper and Pfenning [13] and Sarnat [19], the first four rulesAQ-C, AQ-VAR, AQ-NE-FUN and
AQ-NE-PAIR computestructural equality, whereas the remaining two, the extensionality rulesAQ-EXT-FUN

andAQ-EXT-PAIR, compute type-directed equality. The difference is that in our formulation, theshape
of a value—function or pair— triggers application of the extensionality rules.

Remark 3.1. In contrast to the corresponding equality forλ-terms without pairs [6] (taking awayAQ-NE-PAIR

andAQ-EXT-PAIR), this relation isnot transitive. For instance,λx. n x ∼ n andn ∼ (nL, nR), but not
λx. n x ∼ (nL, nR).

A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing 1013

Type checking. In the following, we give a bidirectional type checking algorithm [7, 17, 13] for normal
terms. We define simultaneously two judgements:

` ⇓ ⊆ Cxt× Exp× (Ty ∪ {Type})
` ⇑ ⊆ Cxt× Exp× Ty

The judgementΓ ` t ⇓ A infers typeA from neutral termst, Γ ` t ⇑ C checks whether theβ-normal
termt has typeC, andΓ ` A ⇓Type identifies wellformed typesA ∈ Ty.

Type inferenceΓ ` t ⇓ A.

INF-VAR
Γ ` x ⇓ Γ(x)

INF-FUN-E
Γ ` r ⇓ Fun A (λxB) Γ ` s ⇑ A

Γ ` r s ⇓ B[s/x]

INF-PAIR-E-L
Γ ` r ⇓ Pair A (λxB)

Γ ` rL ⇓ A
INF-PAIR-E-R

Γ ` r ⇓ Pair A (λxB)
Γ ` rR ⇓ B[rL/x]

Type checkingΓ ` t ⇑ A.

CHK-INF
Γ ` r ⇓ A A ∼ B

Γ ` r ⇑ B
CHK-FUN-I

Γ, x :A ` t ⇑ B

Γ ` λxt ⇑ Fun A (λxB)

CHK-PAIR-I
Γ ` t ⇑ A Γ ` t′ ⇑ B[t/x]

Γ ` (t, t′) ⇑ Pair A (λxB)

Type well-formednessΓ ` A ⇓Type.

CHK-SET-F
Γ ` Set ⇓Type

CHK-SET-E
Γ ` t ⇑ Set

Γ ` El t ⇓Type

CHK-DEP-F
Γ ` A ⇓Type Γ, x :A ` B ⇓Type

Γ ` cA (λxB) ⇓Type
c ∈ {Fun,Pair}

Besides the fact that in both judgements and in the context, types are always in weak head normal form,
the algorithm has the invariant that every expression which is evaluated has been checked before. This
principle ensures termination, a byproduct of soundness which we show in the next section.

The algorithms in this section have been prototypically implemented in Haskell using explicit sub-
stitutions [1].

4. Soundness

The soundness proofs for conversion and type-checking in this section are entirely syntactical and rely
crucially on injectivity ofEl, Fun andPair (Lemma 2.4) and inversion of typing (Lemma 2.7). First, we
show soundness of weak head evaluation, which subsumes subject reduction.

Lemma 4.1. (Soundness of weak head evaluation)
1. If D :: t↘ w andΓ ` t : C thenΓ ` t = w : C.

1014 A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing

2. If D :: w@e↘ w′ andΓ ` w e : C thenΓ ` w e = w′ : C.

Proof:
Simultaneously by induction onD, making essential use of inversion laws.

• Case:

EVAL -FUN-E
r ↘ wf wf@s↘ w

r s↘ w

Γ ` r s : C hypothesis

Γ ` r : Fun A (λxB) &

Γ ` s : A &

Γ ` B[s/x] = C :Type inversion

Γ ` r = wf : Fun A (λxB) first ind. hyp.

Γ ` r s = wf s : B[s/x] EQ-FUN-E

Γ ` wf s : C syntactic validity,CONV

Γ ` wf s = w : C second ind. hyp.

Γ ` r s = w : C EQ-TRANS

• Case:

ELIM -FUN
t[s/x]↘ w

(λxt)@s↘ w

Γ ` (λxt) s : C hypothesis

Γ ` λxt : Fun A (λxB) &

Γ ` s : A &

Γ ` B[s/x] = C :Type inversion

Γ, x :A ` t : B inversion

Γ ` (λxt) s = t[s/x] : B[s/x] EQ-FUN-β

Γ ` (λxt) s = t[s/x] : C EQ-CONV

Γ ` t[s/x] : C syntactic validity

Γ ` t[s/x] = w : C ind. hyp.

Γ ` (λxt) s = w : C EQ-TRANS

ut

Two algorithmically convertible well-typed expressions must also be equal in the declarative sense.
In case of neutral terms, we also obtain that their types are equal. This is due to the fact that we can read
off the type of the common head variable and break it down through the sequence of eliminations.

A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing 1015

Lemma 4.2. (Soundness of conversion)
1. Neutral non-types: IfD :: n ∼ n′ andΓ ` n : C 6≡ Type andΓ ` n′ : C ′ 6≡ Type then

Γ ` n = n′ : C andΓ ` C = C ′ :Type.

2. Weak head values: IfD :: w ∼ w′ andΓ ` w,w′ : C thenΓ ` w = w′ : C.

3. All expressions: Ift↓ ∼ t′↓ andΓ ` t, t′ : C thenΓ ` t = t′ : C.

Proof:
The third proposition is a consequence of the second, using soundness of evaluation (Lemma 4.1) and
transitivity. We prove the first two propositions simultaneously by induction onD.

• Case:

AQ-NE-FUN
n ∼ n′ s↓ ∼ s′↓

n s ∼ n′ s′

Γ ` n s : C hypothesis

Γ ` n : Fun A (λxB) &

Γ ` s : A &

Γ ` B[s/x] = C :Type IM -NE-FUN, inversion

Γ ` n′ s′ : C ′ hypothesis

Γ ` n′ : Fun A′ (λxB′) &

Γ ` s′ : A′ &

Γ ` B′[s′/x] = C ′ :Type IM -NE-FUN, inversion

Γ ` n = n′ : Fun A (λxB) &

Γ ` Fun A (λxB) = Fun A′ (λxB′) :Type first ind. hyp.

Γ ` A = A′ :Type injectivity

Γ ` s′ : A rule CONV

Γ ` s = s′ : A second ind. hyp. (3.)

Γ, x :A ` B = B′ :Type injectivity

Γ ` B[s/x] = B′[s′/x] :Type functionality

Γ ` C = C ′ :Type transitivity, symmetry

Γ ` n s = n′ s′ : C EQ-FUN-E

• Case (instance ofAQ-EXT-FUN with vf ≡ λxt andv′f = n):

AQ-EXT-FUN
(λxt)@x↘ w w ∼ n x n@x↘ n x

λxt ∼ n
x 6∈ FV(n)

1016 A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing

Γ ` λxt : C hypothesis

C ≡ Fun A (λxB) &

Γ, x :A ` t : B inversion

t↘ w assumption

Γ, x :A ` t = w : B eval. sound (Lemma 4.1)

Γ ` n : Fun A (λxB) hypothesis, def.C

Γ ` λx. n x = n : Fun A (λxB) EQ-FUN-η, x 6∈ FV(n)
Γ, x :A ` n : Fun A (λxB) weakening

Γ, x :A ` n x : B FUN-E, HYP

Γ, x :A ` w = n x : B ind. hyp.

Γ, x :A ` t = n x : B transitivity (EQ-TRANS)

Γ ` λxt = λx. n x : Fun A (λxB) EQ-FUN-I

Γ ` λxt = n : C EQ-TRANS

ut

It follows that also type checking is correct, if started in a correct context and with a well-formed
type.

Theorem 4.1. (Soundness of bidirectional type checking)
1. If D :: Γ ` t ⇓ A andΓ ` ok thenΓ ` t : A andA ∈ Ty ∪ {Type}.

2. If D :: Γ ` t ⇑ C andΓ ` C :Type, thenΓ ` t : C.

Proof:
Simultaneously by induction onD. ut

5. Models

To show completeness of algorithmic equality, we leave the syntactic discipline. Although a syntactical
proof should be possible along the lines of Goguen [9, 10], we prefer a model construction since it is
more apt to extensions of the type theory.

The contribution of this section is thatanyPER model over aλ-model with fullβ-equality is a model
of MLFΣ. Only in the next section will we decide on a particular model which enables the completeness
proof.

A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing 1017

5.1. λ Models

We assume a setD with the four operations

· ∈ D× D→ D application,

L ∈ D→ D left projection,

R ∈ D→ D right projection, and

∈ Exp× Env→ D denotation.

Herein, we use the following entities:

c ∈ Const := {Set,El,Fun,Pair} constants

u, v, f, V, F ∈ D ⊇ Const domain of the model

ρ, σ ∈ Env := Var→ D environments

Let p range over the projection functionsL andR. To simplify the notation, we write alsof v for f · v.
Update of environmentρ by the bindingx= v is writtenρ, x= v. The operationsf · v, v p andtρ must
satisfy the following laws:

DEN-CONST cρ = c if c ∈ Const

DEN-VAR xρ = ρ(x)
DEN-FUN-E (r s)ρ = rρ (sρ)
DEN-PAIR-E (r p)ρ = rρ p

DEN-β tρ = t′ρ if t =β t′

DEN-IRR tρ = tρ′ if ρ(x) = ρ′(x) for all x ∈ FV(t)

This notion of model, which does not admit weak (ξ) and strong extensionality rules, but still has the sub-
stitution property (see Lemma 5.1), is an invention of Benzmüller, Brown, and Kohlhase [5, Def. 3.18].
They consider it in the context of typedλ-calculus as a basis for a model of higher-order logics. We have
adapted it to the untyped setting, extended it by projections and added injectivity for the type construc-
tors.

The following laws forβ are admissible:

DEN-FUN-β (λxt)ρ v = t(ρ, x=v)

DEN-PAIR-β-L (r, s)ρ L = rρ

DEN-PAIR-β-R (r, s)ρ R = sρ

Proof:
We show soundness ofDEN-FUN-β.

(λxt)ρ v

= (λxt)ρ x(ρ, x=v) DEN-VAR

= (λxt)(ρ, x=v) x(ρ, x=v) DEN-IRR

= ((λxt) x)(ρ, x=v) DEN-FUN-E

= t(ρ, x=v) DEN-β.

1018 A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing

ut

The subsitution property is a consequence ofβ-equality:

Lemma 5.1. (Soundness of substitution)
(t[s/x])ρ = t(ρ, x=sρ).

Proof:
(t[s/x])ρ = ((λxt) s)ρ = (λxt)ρ sρ = t(ρ, x=sρ). ut

Remark 5.1. (Comparison to standardλ-model)
Barendregt et. al. [4] axiomatize aλ-model byDEN-VAR, DEN-FUN-E, DEN-FUN-β, and weak exten-
sionality:

DEN-FUN-ξ (λxt)ρ = (λx′t′)ρ′ if t(ρ, x=v) = t′(ρ′, x′=v) for all v ∈ D.

Then irrelevance (DEN-IRR) and substitution (Lemma 5.1) are provable by induction ont, andDEN-β
follows. However, in Benzm̈uller, Brown, and Kohlhase’s notion ofλ-model, weak extensionality is
not admissible: ConsiderD to be closedλ-terms over the empty set of constants moduloβη-equality,
where denotationtρ is interpreted as parallel substitution. This clearly modelsDEN-VAR, DEN-FUN-E,
DEN-β, andDEN-IRR, hence, is a model in the sense of Benzmüller, Brown, and Kohlhase. But Plotkin
[18] showed that theω-rule does not hold inλβη-calculus, i.e., there are (closed) termsr, s such that
for all closed termst it holds thatr t =βη s t, but notr =βη s. It follows for a fresh variablex that
(r x)(ρ, x = t) = (s x)(ρ, x = t) for all t ∈ D, but not(λx. r x)ρ = (λx. s x)ρ, henceξ fails. Thus,
Benzm̈uller, Brown, and Kohlhase’s notion of a model is strictly weaker than the standard one, even in
the untyped setting. For typed models, this has already been demonstrated [5, Example 5.8], but the
counterexample provided does not carry over to untyped models.

Injectivity laws. We require the type constructors in the model to be injective. This is necessary since
we want to interpret distinguished elements ofD, the types, as semantical types later. In the following,
let c, c′ ∈ {Fun,Pair}.

DEN-SET-NOT-EL Set 6= El v

DEN-SET-NOT-DEP Set 6= c V F

DEN-EL-NOT-DEP El v 6= c V F

DEN-EL-INJ El v = El v′ impliesv = v′

DEN-DEP-INJ c V F = c′ V ′ F ′ impliesc = c′ andV = V ′ andF = F ′

5.2. PER Models

In the definition of PER models, we follow a paper of the second author with Pollack and Takeyama [8]
and Vaux [21]. The only difference is, since we have codes for types inD, we can define the semantical
property ofbeing a typedirectly on elements ofD, whereas the cited works introduce anintensional type
equalityon closurestρ.

A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing 1019

Relations onD. Let Rel denote the set of relations overD. If A ∈ Rel, we sayv ∈ A if v is in the
carrier ofA, i. e.,(v, w) ∈ A or (w, v) ∈ A for somew ∈ D.

Partial equivalence relation (PER). A PER is a symmetric and transitive relation. LetPer ⊆ Rel
denote the set of PERs overD. If A ∈ Per, we writev = v′ ∈ A if (v, v′) ∈ A. ForA a PER,v ∈ A
meansv = v ∈ A. Each setA ⊆ D can be understood as the discrete PER wherev = v′ ∈ A holds iff
v = v′ andv ∈ A.

Equivalence classes and families. If v ∈ A, thenvA := {v′ ∈ D | v = v′ ∈ A} denotes the
equivalence class ofv in A. We writeD/A for the set of all equivalence classes inA. Let Fam(A) =
D/A → Per. If F ∈ Fam(A) andv ∈ A, we useF(v) as a shorthand forF(vA).

Constructions on PERs. LetA ∈ Rel andF ∈ A → Rel . We defineFun(A,F),Pair(A,F) ∈ Rel:

(f, f ′) ∈ Fun(A,F) iff (f v, f ′ v′) ∈ F(v) for all (v, v′) ∈ A
(v, v′) ∈ Pair(A,F) iff (v L, v′ L) ∈ A and(v R, v′ R) ∈ F(v L)

Lemma 5.2. (Fun andPair operate on PERs)
If A ∈ Per andF ∈ Fam(A) thenFun(A,F),Pair(A,F) ∈ Per.

In the following, assume someSet ∈ Per and someE` ∈ Fam(Set).

Semantical types. We define inductively a new relationType ∈ Per and a new function[] ∈ Fam(Type):

Set = Set ∈ Type and[Set] is Set .
El v = El v′ ∈ Type if v = v′ ∈ Set . Then[El v] is E`(v).
Fun V F = Fun V ′ F ′ ∈ Type if V = V ′ ∈ Type andv = v′ ∈ [V] impliesF v = F ′ v′ ∈ Type.

We define then[Fun V F] to beFun([V], v 7→ [F v]).
Pair V F = Pair V ′ F ′ ∈ Type if V = V ′ ∈ Type andv = v′ ∈ [V] impliesF v = F ′ v′ ∈ Type.

We define then[Pair V F] to bePair([V], v 7→ [F v]).

This definition is possible by the injectivity laws. Notice that in the last two clauses, we have

Fun([V], v 7→ [F v]) = Fun([V ′], v 7→ [F ′ v]), and
Pair([V], v 7→ [F v]) = Pair([V ′], v 7→ [F ′ v]).

Remark 5.2. Type and[] are an instance of an inductive-recursive definition. A formulation alternative
via a relation which is not a priori a PER, and a partial function, is given in Appendix C.

5.3. Validity

If Γ is a context, we define a corresponding PER onEnv, written [Γ]. We defineρ = ρ′ ∈ [Γ] to mean
that, for allx:A in Γ, we haveAρ = Aρ′ ∈ Type andρ(x) = ρ′(x) ∈ [Aρ].

1020 A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing

Semantical contextsΓ ∈ Cxt are defined inductively by the following rules:

SEM-CXT-EMPTY
� ∈ Cxt

SEM-CXT-EXT
Γ ∈ Cxt Aρ = Aρ′ ∈ Type for all ρ = ρ′ ∈ [Γ]

(Γ, x :A) ∈ Cxt

Theorem 5.1. (Soundness of the rules ofMLFΣ)
1. If D :: Γ ` ok thenΓ ∈ Cxt .

2. If D :: Γ ` A :Type thenΓ ∈ Cxt , and ifρ = ρ′ ∈ [Γ] thenAρ = Aρ′ ∈ Type.

3. If D :: Γ ` t : A thenΓ ∈ Cxt , and ifρ = ρ′ ∈ [Γ] thenAρ = Aρ′ ∈ Type andtρ = tρ′ ∈ [Aρ].

4. If D :: Γ ` A = A′ :Type thenΓ ∈ Cxt , and ifρ = ρ′ ∈ [Γ] thenAρ = A′ρ′ ∈ Type.

5. If D :: Γ ` t = t′ : A then Γ ∈ Cxt , and if ρ = ρ′ ∈ [Γ] then Aρ = Aρ′ ∈ Type and
tρ = t′ρ′ ∈ [Aρ].

Proof:
Simultaneously by induction onD, using lemma 5.1.

• Case:

FUN-I
Γ, x :A ` t : B

Γ ` λxt : Fun A (λxB)

(Γ, x :A) ∈ Cxt ind. hyp. (*)

Γ ∈ Cxt inversion

ρ = ρ′ ∈ [Γ] assumption

Aρ = Aρ′ ∈ Type from (*)

v = v′ ∈ [Aρ] assumption (v, v′ arbitrary)

(ρ, x=v) = (ρ′, x=v′) ∈ [Γ, x :A] def. [Γ, x :A]
B(ρ, x=v) = B(ρ′, x=v′) ∈ Type ind. hyp.

(λxB)ρ v = (λxB)ρ′ v′ ∈ Type DEN-FUN-β

(Fun A λxB)ρ = (Fun A λxB)ρ′ ∈ Type def. Type, DEN-FUN-E, DEN-CONST

t(ρ, x=v) = t(ρ′, x=v′) ∈ [B(ρ, x=v)] ind. hyp.

(λxt)ρ v = (λxt)ρ′ v′ ∈ [(λxB)ρ v] DEN-FUN-β

(λxt)ρ = (λxt)ρ′ ∈ [(Fun A λxB)ρ] def.Fun, DEN-FUN-E, DEN-CONST

• Case:

FUN-E
Γ ` r : Fun A (λxB) Γ ` s : A

Γ ` r s : B[s/x]

A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing 1021

Γ ∈ Cxt ind. hyp.

Fun (Aρ) ((λx.B)ρ) = Fun (Aρ′) ((λx.B)ρ′) ∈ Type ind. hyp.

sρ = sρ′ ∈ [Aρ] ind. hyp.

B(ρ, x=sρ) = B(ρ′, x=sρ′) ∈ Type def. Type
(B[s/x])ρ = (B[s/x])ρ′ ∈ Type subst. (Lemma 5.1)

rρ = rρ′ ∈ Fun([Aρ], v 7→ [B(ρ, x=v)]) ind. hyp.

rρ (sρ) = rρ′ (sρ′) ∈ [B(ρ, x=sρ)] def.Fun
(r s)ρ = (r s)ρ′ ∈ [(B[s/x])ρ] DEN-FUN-E, Lemma 5.1

• Case:

EQ-FUN-β
Γ, x :A ` t : B Γ ` s : A

Γ ` (λxt) s = t[s/x] : B[s/x]

Γ ∈ Cxt ind. hyp.

ρ = ρ′ ∈ [Γ] assumption

Aρ = Aρ′ ∈ Type ind. hyp.

sρ = sρ′ ∈ [Aρ] ind. hyp.

(ρ, x=sρ) = (ρ′, x=sρ′) ∈ [Γ, x :A] def. [Γ, x :A]
t(ρ, x=sρ) = t(ρ′, x=sρ′) ∈ [B(ρ, x=sρ)] ind. hyp.

(λxt)ρ (sρ) = (t[s/x])ρ′ ∈ [(B[s/x])ρ] DEN-FUN-β, subst.

B(ρ, x=sρ) = B(ρ′, x=sρ′) ∈ Type ind. hyp.

(B[s/x])ρ = (B[s/x])ρ′ ∈ Type subst. (Lemma 5.1)

• Case:

EQ-FUN-η
Γ ` t : Fun A (λxB)

Γ ` (λx. t x) = t : Fun A (λxB)
x 6∈ FV(t)

1022 A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing

Γ ∈ Cxt ind. hyp.

ρ = ρ′ ∈ [Γ] assumption

(Fun A λxB)ρ = (Fun A λxB)ρ′ ∈ Type ind. hyp.

Aρ = Aρ′ ∈ Type inversion onType
v = v′ ∈ [Aρ] assumption (v, v′ arbitrary)

tρ = tρ′ ∈ [(Fun A λxB)ρ] ind. hyp.

tρ v = tρ′ v′ ∈ [(λxB)ρ v] def. Fun
t(ρ, x=v) v = tρ′ v′ ∈ [(λxB)ρ v] irrelevanceDEN-IRR

(t x)(ρ, x=v) = tρ′ v′ ∈ [(λxB)ρ v] DEN-FUN-E, DEN-VAR

(λx. t x)ρ v = tρ′ v′ ∈ [(λxB)ρ v] DEN-FUN-β

(λx. t x)ρ = tρ′ ∈ [(Fun A λxB)ρ] sincev, v′ arb.

• Case:

EQ-PAIR-η
Γ ` r : Pair A (λxB)

Γ ` (r L, r R) = r : Pair A (λxB)

Γ ∈ Cxt ind. hyp.

ρ = ρ′ ∈ [Γ] assumption

(Pair A λxB)ρ = (Pair A λxB)ρ′ ∈ Type ind. hyp.

rρ = rρ′ ∈ [(Pair A λxB)ρ] ind. hyp.

(r L)ρ = rρ′ L ∈ [Aρ] def.Pair , DEN-PAIR-E

(r L, r R)ρ L = rρ′ L ∈ [(Pair A λxB)ρ] DEN-PAIR-β-L

(r R)ρ = rρ′ R ∈ [(λxB)ρ (r L)ρ] def.Pair , DEN-PAIR-E

(r L, r R)ρ R = rρ′ R ∈ [(λxB)ρ ((r L, r R)ρ L)] DEN-PAIR-β-R

(r L, r R)ρ = rρ′ ∈ [(Pair A λxB)ρ] def.Pair

ut

5.4. Safe Types

We define an abstract notion ofsafety, similar to what Vaux calls “saturation” [21]. A PER is safe if it
lies between a PERN on neutralexpressions and a PERS on safeexpressions [22]. In the following,
we use set notation⊆ and∪ also for PERs.

A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing 1023

Safety. N ,Sfun ,Spair ∈ Per form asafety rangeif the following conditions are met:

SAFE-INT N ⊆ S = Sfun ∪ Spair

SAFE-NE-FUN u v = u′ v′ ∈ N if u = u′ ∈ N andv = v′ ∈ S
SAFE-NE-PAIR u p = u′ p ∈ N if u = u′ ∈ N
SAFE-EXT-FUN v = v′ ∈ Sfun if v u = v′ u′ ∈ S for all u = u′ ∈ N
SAFE-EXT-PAIR v = v′ ∈ Spair if v L = v′ L ∈ S andv R = v′ R ∈ S

A relationA ∈ Per is calledsafew. r. t. to a safety range(N ,Sfun ,Spair) if N ⊆ A ⊆ S.

Lemma 5.3. (Fun and Pair preserve safety)
If A ∈ Per is safe andF ∈ Fam(A) is such thatF(v) is safe for allv ∈ A thenFun(A,F) and
Pair(A,F) are safe.

Proof:
By monotonicity ofFun andPair , if one considers the following reformulation of the conditions:

SAFE-NE-FUN N ⊆ Fun(S, 7→ N)
SAFE-NE-PAIR N ⊆ Pair(N , 7→ N)
SAFE-EXT-FUN Fun(N , 7→ S) ⊆ Sfun

SAFE-EXT-PAIR Pair(S, 7→ S) ⊆ Spair

ut

Lemma 5.4. (Type interpretations are safe)
Let Set be safe andE`(v) be safe for allv ∈ Set . If V ∈ Type then[V] is safe.

Proof:
By induction on the proof thatV ∈ Type, using Lemma 5.3. ut

6. Term Model

In this section, we instantiate the model of the previous section to the set of expressions moduloβ-
equality. Application is interpreted as expression application and the projections of the model are mapped
to projections for expressions. Letr ∈ D denote the equivalence class ofr ∈ Exp with regard to=β.

D := Exp/=β

r · s := r s

r L := r L

r R := r R

tρ := t[ρ]

Herein,t[ρ] denotes the substitution ofρ(x) for x in t, carried out in parallel for allx ∈ FV(t). In the
following, we abbreviate the equivalence classr by its representativer, if clear from the context.

1024 A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing

Lemma 6.1. Exp/ =β is aλ model in the sense of the last section.

Proof:
We have to show that all operations are well-defined. For application, consider pairs of equivalent mem-
bersr =β r′ ands =β s′. Sincer s =β r′ s′, application is well-defined. The projections are similarly
easy. For the denotation operation, lett a term withFV (t) = ~x. We assume two equivalent valuationsρ
andρ′, meaning thatρ(x) =β ρ′(x) for all variablesx. Now 2

t[ρ] =β ((λ~xt) ~x)[ρ] =β (λ~xt)[ρ] ~x[ρ] =β (λ~xt) ~x[ρ]
=β (λ~xt)[ρ′] ~x[ρ] =β (λ~xt)[ρ′] ~x[ρ′] =β ((λ~xt) ~x)[ρ′] =β t[ρ′].

If we weaken the assumption such thatρ andρ′ have to equivalent only on the free variables oft, the
calculation is still sound and validatesDEN-IRR. The lawsDEN-CONST, DEN-VAR, DEN-FUN-E and
DEN-PAIR-E follow directly by the definition of parallel substitution, with a little work alsoDEN-β. The
injectivity requirements hold sinceEl, Fun, andPair are unanimated constants.

ut

Value classes. Theβ-normal formsv ∈ Val, which can be described by the following grammar, com-
pletely represent theβ-equivalence classest ∈ Exp/=β of β-normalizing termst.

VNe 3 u ::= c | x | u v | u p neutral values

VFun 3 vf ::= u | λxv function values

VPair 3 vp ::= u | (v, v′) pair values

Val 3 v ::= vf | vp values

η-reduction on β-normal forms. In order to obtain anη-equality on values, we define one-stepη-
reductionv −→η v′ for v, v′ ∈ Val inductively by the following rules.

ETA-FUN-RED
λx. u x −→η u

ETA-PAIR-RED
(u L, u R) −→η u

ETA-FUN-I
v −→η v′

λxv −→η λxv′

ETA-FUN-E-L
u −→η u′

u v −→η u′ v
ETA-FUN-E-R

v −→η v′

u v −→η u v′

ETA-PAIR-I-L
v1 −→η v′1

(v1, v2) −→η (v′1, v2)
ETA-PAIR-E

u −→η u′

u p −→η u′ p

Note thatη-reduction onβ-normal forms does not createβ-redexes, hence it is well-defined. Neutral
values reduce to neutral values, so it is even well-defined onVNe. It doesnot preserve typing, e. g.,

2Benzm̈uller, Brown, and Kohlhase [5] prove a similar result by convertingt into anSK-combinatorical term. Our argument
seems simpler.

A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing 1025

z : Pair A B ` (z L, z R) : Pair A (λ .B (z L)), but notz : Pair A B ` z : Pair A (λ .B (z L)). In
contrast toη-reduction on arbitrary terms, it is locally confluent. Let−→∗

η denote the reflexive-transitive
closure of−→η. As usual,η-equalityv =η v′ holds iff v −→∗

η v0
∗
η←− v′ for somev0. Note that all

ETA-rules above are admissible for both−→∗
η and=η.

Lemma 6.2. (Local confluence)
If D1 :: v0 −→η v1 andD2 :: v0 −→η v2 thenv1 −→∗

η v3 andv2 −→∗
η v3 for somev3.

Proof:
By simultaneous induction onD1 andD2. Some cases:

• Casev1 = v2. Thenv3 = v1 −→∗
η v3.

• CaseD1 :: λx. u x −→η u andD2 :: λx. u x −→η λx. u′ x whereu −→η u′. Thenλx. u′ x −→η

u′.

• CaseD1 :: (u L, u R) −→η u andD2 :: (u L, u R) −→η (u′ L, u R) whereu −→η u′. Then
u −→∗

η u′ and(u′ L, u R) −→η (u′ L, u′ R) −→η u′.

• CaseD1 :: u v −→η u′ v with u −→η u′ andD2 :: u v −→η u v′ with v −→η v′. Then
u′ v −→η u′ v′ andu v′ −→η u′ v′.

• CaseD1 :: λxv0 −→η λxv1 with v0 −→η v1 andD2 :: λxv0 −→η λxv2 with v0 −→η v2. By
induction hypothesisv1 −→η v3 andv2 −→η v3, hence,λxv1 −→η λxv3 andλxv2 −→η λxv3.

ut

Corollary 6.1. (Confluence)
If v0 −→∗

η v1 andv0 −→∗
η v2 thenv1 −→∗

η v3 andv2 −→∗
η v3 for somev3.

Proof:
By Newman’s lemma, it is sufficient to show that−→∗

η is strongly normalizing. This is easy to see: Each
reduction step decreases the number of introductions (λs and pairs), and no step creates an introduction.

ut

Lemma 6.3. (Inversion properties of−→∗
η)

1. If D :: x −→∗
η v0 thenv0 = x. If D :: c −→∗

η v0 thenv0 = c.

2. If D :: u v −→∗
η v0 thenv0 = u′ v′ with u −→∗

η u′ andv −→∗
η v′.

3. If D :: u p −→∗
η v0 thenv0 = u′ p with u −→∗

η u′.

4. If D :: λxv −→∗
η v0 then either

• v0 = u neutral andv −→∗
η u x, or

• v0 = λxv′ andv −→∗
η v′.

5. If D :: (v1, v2) −→∗
η v0 then either

• v0 = u neutral and bothv1 −→∗
η u L andv2 −→∗

η u R, or

1026 A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing

• v0 = (v′1, v
′
2) and bothv1 −→∗

η v′1 andv2 −→∗
η v′2.

Proof:
Each by induction onD. ut

Corollary 6.2. (Inversion on =η)
1. If x =η u0 thenu0 = x. If c =η u0 thenu0 = c.

2. If u v =η u0 thenu0 = u′ v′ with u =η u′ andv =η v′.

3. If u p =η u0 thenu0 = u′ p with u =η u′.

4. If λxv =η u thenv =η u x.

5. If λxv =η λxv′ thenv =η v′.

6. If (v1, v2) =η u thenv1 =η u L andv2 =η u R.

7. If (v1, v2) =η (v′1, v
′
2) thenv1 =η v′1 andv2 =η v′2.

8. If (v1, v2) =η λxv thenv1 −→∗
η u L, v2 −→∗

η u R, andu x ∗
η←− v for someu.

An η-equality on β-equivalence classes.Since−→∗
η is confluent,η-equalityv1 =η v2, which holds

iff v1 −→∗
η v ∗

η←− v2 for somev, is transitive and, hence, an equivalence relation onVal. Thus, the
relation

t ' t′ :⇐⇒ t =β v andt′ =β v′ for somev, v′ with v =η v′

is a partial equivalence onExp. Note that ift ' t′, thent andt′ areβ-normalizable. Ift, t′ areβ-normal
forms, thent ' t′ if t =η t′. We lift ' to β-equivalence classes:t ' t′ iff t ' t′. Two classes are only
related if both contain aβ-normal form. Choosing these normal forms as representatives, we have

v ' v′ ⇐⇒ v =η v′.

Safety range. We define the following sub-relationsN ,Sfun ,Spair ⊆ S := '.

(u, u′) ∈ N :⇐⇒ u =η u′

(vf , v′f) ∈ Sfun :⇐⇒ vf =η v′f
(vp, v′p) ∈ Spair :⇐⇒ vp =η v′p

Lemma 6.4. N ,Sfun ,Spair ∈ Per.

Lemma 6.5. (Extensionality for functions)
If v x ' v′ x with x 6∈ FV(v, v′), thenv, v′ ∈ VFun andv =η v′.

Proof:
Consider the cases:

• Casev, v′ neutral. Thenv x =η v′ x, andv =η v′ follows by Cor. 6.2, item 2.

A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing 1027

• Casev = λxv0 andv′ = u neutral. W. l. o. g.,x 6∈ FV(u). By assumptionv x ' u x, and since
(λxv0) x −→β v0, we havev0 =η u x. Hence,λxv0 =η λx. u x =η u.

• Casev = λxv0 andv′ = λxv′0. From the assumption we getv0 =η v′0 by β-reduction. Hence,
λxv0 =η λxv′0.

• Casev = (v1, v2). Then(v1, v2) x does not reduce toβ-normal form, which is a contradiction to
the assumption.

ut

Corollary 6.3. (SAFE-EXT-FUN)
If v u = v′ u′ ∈ S for all u = u′ ∈ N , thenv = v′ ∈ Sfun .

Proof:
By the previous lemma withu = u′ = x 6∈ FV(v, v′). ut

Lemma 6.6. (SAFE-EXT-PAIR)
If v L ' v′ L andv R ' v′ R thenv, v′ ∈ VPair andv =η v′.

Proof:
By cases, similar to last lemma. ut

Corollary 6.4. (Safety range)
N ,Sfun ,Spair form a safety range.

Proof:
SAFE-INT holds by definition ofN ,Sfun ,Spair . RequirementsSAFE-NE-FUN and SAFE-NE-PAIR are
simple closure properties ofη-equality. SAFE-EXT-FUN is satisfied by Cor. 6.3 andSAFE-EXT-PAIR by
Lemma 6.6. ut

Now we can instantiate our generic PER model ofMLFΣ. We letSet := S andE`(t) := S. From
this we get a decision procedure for judgemental equality.

Lemma 6.7. (Context satisfiable)
Let ρ0(x) := x for all x ∈ Var. If Γ ` ok, thenρ0 ∈ [Γ].

Corollary 6.5. (Equal terms are related)
If Γ ` t = t′ : C 6≡Type thent ' t

′.

Proof:
By soundness ofMLFΣ (Thm. 5.1), tρ0 = t′ρ0 ∈ [Cρ0]. The claim follows since[Cρ0] ⊆ S by
Lemma 5.4. ut

We have shown that each well-typed term isβ-normalizable and two judgementally equal termsβη-
reduce to the same normal form. This gives us a decision procedure for equality of well-typed terms.

It remains to show that our algorithmic equality is also a decision procedure. In the next section, we
demonstrate thatt ' t

′ impliest↓ ∼ t′↓, which means that botht andt′ weak head normalize and these
normal forms are algorithmically equal. Then we have proven completeness of the algorithmic equality.

1028 A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing

7. Completeness

In this section, we show completeness of the algorithmic presentation ofMLFΣ by relating it to the term
model of the last section.

7.1. A Transitive Extension of Algorithmic Equality

To relate theη-equality onβ-normalforms' to the algorithmic equality∼, we first present a transitive

extension
+∼ of the algorithmic equality which is conservative for terms of the same type. We then show

that this extension
+∼ is equivalent to'. Since' has been shown complete through the PER model, the

algorithmic equality is also complete for terms of the same type.

Algorithmic equality, restated. We recapitulate the rules of algorithmic equality, this time without
use of active elimination@.

Rules for neutral terms:

AQ-C
c ∼ c

AQ-VAR
x ∼ x

AQ-NE-FUN
n ∼ n′ s↓ ∼ s′↓

n s ∼ n′ s′
AQ-NE-PAIR

n ∼ n′

n p ∼ n′ p

The following three rules are a synonym forAQ-EXT-FUN.

AQ-EXT-FUN-FUN
t↓ ∼ t′↓

λxt ∼ λxt′

AQ-EXT-FUN-NE
t↓ ∼ n x

λxt ∼ n
x 6∈ FV(n) AQ-EXT-NE-FUN

n x ∼ t↓
n ∼ λxt

x 6∈ FV(n)

And these three rules are a synonym forAQ-EXT-PAIR.

AQ-EXT-PAIR-PAIR
r↓ ∼ r′↓ s↓ ∼ s′↓

(r, s) ∼ (r′, s′)

AQ-EXT-PAIR-NE
r↓ ∼ n L s↓ ∼ n R

(r, s) ∼ n
AQ-EXT-NE-PAIR

n L ∼ r↓ n R ∼ s↓
n ∼ (r, s)

A transitive extension. Let w
+∼ w′ be given by the rules for algorithmic equality plus the following

two:

AQ+-FUN-PAIR
t↓ +∼ n x n L

+∼ r↓ n R
+∼ s↓

λxt
+∼ (r, s)

x 6∈ FV(n)

AQ+-PAIR-FUN
r↓ +∼ n L s↓ +∼ n R n x

+∼ t↓
(r, s) +∼ λxt

x 6∈ FV(n)

A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing 1029

These rules destroy the algorithmic character, since the neutral termn has to be guessed if one reads the
rules from bottom to top as in logic programming.

Lemma 7.1. (The extension+∼ is conservative for same-typed terms)
1. If D :: n

+∼ n′ andΓ ` n : C andΓ ` n′ : C ′ thenn ∼ n′.

2. If D :: t↓ +∼ t′↓ andΓ ` t, t′ : C thent↓ ∼ t′↓.

Proof:
Simultaneously by induction onD using subject reduction for weak head evaluation which is implied by
its soundness (Lemma 4.1). The requirement of being of the same type in (2.) preventsD from applying
rulesAQ+-FUN-PAIR andAQ+-PAIR-FUN. HenceD contains only the counterparts of the rules for the
algorithmic equality. ut

As a consequence, the algorithmic equality is transitive for terms of the same type, provided
+∼ is indeed

transitive. This claim will be validated through equivalence with the transitive'.

7.2. Soundness of the Extended Algorithmic Equality

In this section, we show that the extended algorithmic equality
+∼ is sound w. r. t. the model equality

'. Together with the dual result of the next section we establish equivalence of these two notions of

equality. As a byproduct, we obtain transitivity of
+∼, which we will later also obtain directly (see

Section 8). However, for the completeness of the algorithmic equality, which is the main theme of this
article, the soundness result of this section is not relevant.

Lemma 7.2. (Standardization)
1. If t =β x thent↘ x. If t =β c thent↘ c.

2. If t =β n s thent↘ n′ s′ with n =β n′ ands =β s′.

3. If t =β n p thent↘ n′ p with n =β n′.

4. If t =β λxr thent↘ λxr′ with r =β r′.

5. If t =β (r, s) thent↘ (r′, s′) with r =β r′ ands =β s′.

Proof:
Fact about theλ-calculus [3]. ut

Lemma 7.3. (Soundness of+∼ w. r. t. ')
If D :: t↓ +∼ t′↓ thent ' t′.

Proof:
By induction onD, using standardization. All cases are easy, for example:

1030 A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing

• Case

AQ+-NE-FUN
n

+∼ n′ s↓ +∼ s′↓
n s

+∼ n′ s′

By induction hypothesis and standardization,n =β u =η u′ =β n′ ands =β v =η v′ =β s′.
Thus,n s =β u v =η u′ v′ =β n′ s′.

• Case

AQ+-EXT-FUN-NE
t↓ +∼ n x

λxt
+∼ n

x 6∈ FV(n)

By induction hypothesis and standardization,t =β v =η u x =β n x, hence,λxt =β λxv =η

λx. u x =η u =β n.

• Case

AQ+-FUN-PAIR
t↓ +∼ n x n L

+∼ r↓ n R
+∼ s↓

λxt
+∼ (r, s)

x 6∈ FV(n)

By induction hypothesis and standardization,t =β v =η u x =β n x, hence,λxv =η λx. u x =η

u. Further,n L =β u L =η v1 =β r andn R =β u R =η v2 =η s, thus,u =η (u L, u R) =η

(v1, v2). Together,λxt =β λxv =η (v1, v2) =β (r, s).
ut

Corollary 7.1. If t↓ +∼ t↓ thent is β-normalizable.

Remark 7.1. A consequence of the lemma is thatv
+∼ v′ implies v =η v′. This can also be proven

directly without the use of standardization.

7.3. Completeness of the Extended Algorithmic Equality

Lemma 7.4. (Completeness of+∼ on β-normal forms)
If v =η v′ thenv

+∼ v′.

For the proof we need an induction measure| · | on terms which is compatible with the subterm ordering
and gives extra weight to introductions, such that|λxr| + |t| > |r| + |t x| and |(r, s)| + |t| > |r| +
|t L|. These conditions are also met by Goguen’s [10] measure for proving termination of Coquand’s [6]
algorithmic equality restricted to pureλ-terms. But we need the extra conditions|λxt| > 2|t| and both
|(r, s)| > 2|r| and|(r, s)| > 2|s|.

|x| := |c| := 1
|r s| := |r|+ |s|
|r p| := |r|+ 1
|λxt| := 2|t|+ 1
|(r, s)| := 2|r|+ 2|s|

Observe that the conditions are met since|t| ≥ 1 for all termst. This measure is compatible with
η-reduction, i. e., ifv −→η v′ then|v| > |v′|.

A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing 1031

Proof:
[of Lemma 7.4] By induction on|v|+ |v′|. We first treat the cases for neutral termsu =η u′.

• Caseu = c. Thenu′ = c by Cor. 6.2 andc
+∼ c.

• Caseu = x. Similar.

• Caseu = u1 v1. Then by Cor. 6.2u′ = u2 v2 with u1 =η u2 andv1 =η v2. By induction

hypothesisu1
+∼ u2 andv1

+∼ v2, henceu
+∼ u′ by AQ+-NE-FUN.

• Caseu = u1 p. Similar.

Now we look at the general formv =η v′, where we omit symmetrical cases.

• Caseλxv =η u. By Cor. 6.2,v =η u x. Since|v| + |u x| = |v| + |u| + 1 < (2|v| + 1) + |u| =
|λxv| + |u|, we can apply the induction hypothesis and obtainv

+∼ u x. Thusλxv
+∼ u by

AQ+-EXT-FUN-NE.

• Caseλxv =η λxv′. By Cor. 6.2,v =η v′, on which we apply the induction hypothesis and
AQ+-EXT-FUN-FUN.

• Caseλxv =η (v1, v2). By Cor. 6.2 there exists a neutralu such thatv −→∗
η u x and bothu L ∗

η←−
v1 andu R ∗

η←− v2. Since reduction is compatible with the measure, we have|v|+ |u x| ≤ 2|v| <
2|v| + 1 = |λxv| and can apply the induction hypothesis to obtainv

+∼ u x. Further, we have

|u L| + |v1| ≤ 2|v1| < 2|v1 + v2| = |(v1, v2)|, thus, by induction hypothesis,u L
+∼ v1, and

similarly, u R
+∼ v2. By AQ+-FUN-PAIR we getλxv

+∼ (v1, v2).

• Case(v1, v2) =η u. By Cor. 6.2,v1 =η u L andv2 =η u R. Since|v1|+ |u L| = |v1|+ |u|+ 1 <

2(|v1| + |v2|) + |u| = |(v1, v2)| + |u|, by induction hypothesis,v1
+∼ u L, and with a similar

calculation,v2
+∼ u R. Thus,(v1, v2)

+∼ u by AQ+-NE-PAIR.

• Case(v1, v2) =η (v′1, v
′
2). By inversion, induction hypothesis, and ruleAQ+-EXT-PAIR-PAIR.

ut

Remark 7.2. (Alternative proof)
First, show reflexivityv

+∼ v for all β-normal formsv by induction onv. Then prove that
+∼ is closed

underη-expansion. More precisely, show that

1. u −→η u′ andD :: u′ ~e
+∼ v imply u~e

+∼ v for a vector of eliminations~e, and

2. v1 −→η v2 andD :: v2
+∼ v3 imply v1

+∼ v3

simultaneously by induction onD. For reasons of symmetry,
+∼ is also closed byη-expansion on the

right hand side. Finally, assumingv1 −→∗
η v2

∗
η←− v3 we can showv1

+∼ v3 from v2
+∼ v2 by induction

on the number of reduction steps.

Lemma 7.5. (From normal to normalizing terms)
1. If n =β u andn′ =β u′ andD :: u

+∼ u′, thenn
+∼ n′.

1032 A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing

2. If t =β v andt′ =β v′ andD :: v
+∼ v′, thent↓ +∼ t′↓.

Proof:
Simultaneously by induction onD, using standardization.

• Casen =β u v andn′ =β u′ v′ and

AQ+-NE-FUN
u

+∼ u′ v
+∼ v′

u v
+∼ u′ v′

n↘ n0 s with n0 =β u ands =β v standardization

n′ ↘ n′
0 s′ with n′

0 =β u′ ands′ =β v′ standardization

n0
+∼ n′

0 first ind. hyp.

s↓ +∼ s′↓ second ind. hyp.

n0 s
+∼ n′

0 s′ AQ+-NE-FUN

n ≡ n0 s andn ≡ n′
0 s′ n↘ n for n ∈WNe

n
+∼ n′

• Caset =β λxv andt′ =β u and

AQ+-EXT-FUN-NE
v

+∼ u x

λxv
+∼ u

x 6∈ FV(u)

t↘ λxr with r =β v standardization

t′ ↘ n with n =β u standardization

x 6∈ FV(n) renaming

n x =β u x =β is a congruence

r
+∼ n x induction hypothesis

λxr
+∼ n AQ+-EXT-FUN-NE

• Caset =β λxv andt′ =β (v1, v2) and

AQ+-FUN-PAIR
v

+∼ u x u L
+∼ v1 u R

+∼ v2

λxv
+∼ (v1, v2)

x 6∈ FV(u)

t↘ λxr with r =β v standardization

t′ ↘ (r1, r2) with r1 =β v1 andr2 =β v2 standardization

r
+∼ u x andu L

+∼ r1 andu R
+∼ r2 induction hypotheses

λxr
+∼ (r1, r2) AQ+-FUN-PAIR

A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing 1033

ut

Corollary 7.2. [Completeness of
+∼] If t ' t′ thent↓ +∼ t′↓.

Proof:
By assumptiont =β v =η v′ =β t′. Firstv

+∼ v′ by Lemma 7.4, then alsot↓ +∼ t′↓ by Lemma 7.5. ut

Corollary 7.3. If t is β-normalizable, thent↓ +∼ t↓.

Together with Cor. 7.1 we see that the diagonal of extended algorithmic equalty—which coincides
with the diagonal of pure algorithmic equality—characterizes the weakly normalizing termst. Therefore,

we can definew ∈ WN :⇐⇒ w
+∼ w andt ∈ WN :⇐⇒ t↘ w ∈ WN. Let us specialize the rules of

algorithmic equality toWN:

c ∈WN x ∈WN

n ∈WN s ∈WN

n s ∈WN

n ∈WN

n p ∈WN

r ∈WN

λxr ∈WN

r ∈WN s ∈WN

(r, s) ∈WN

t↘ w w ∈WN

t ∈WN

This predicate corresponds Joachimski and Matthes’ [14] inductive characterization of weakly normal-
izing λ-terms. (Only that they use weak head reduction instead of weak head evaluation.)

7.4. Completeness of Algorithmic Equality

Now we can assemble the pieces of the jigsaw puzzle.

Theorem 7.1. (Completeness of algorithmic equality)
1. If Γ ` t = t′ : C 6≡Type thent↓ ∼ t′↓.

2. If D :: Γ ` A = A′ :Type thenA ∼ A′.

Proof:
Completeness for terms (1): By Cor. 6.5 we havet ' t

′, which entailst↓ +∼ t′↓ by Cor. 7.2. Since
Γ ` t, t′ : C, we infer t↓ ∼ t′↓ by Lemma 7.1. The completeness for types (2) is then shown by
induction onD, using completeness for terms in caseEQ-SET-E. ut

8. A Shortcut: Disposing ofη-Reduction

In sections 7.2 and 7.3 we have shown that the extended algorithmic equality
+∼ is equivalent toη-

equality onβ-normal forms. Hence, we could define more directlyv ' v′ iff v
+∼ v′. The requirement

SAFE-EXT-FUN is simply fulfilled by ruleAQ+-EXT-FUN, andSAFE-EXT-PAIR by AQ+-EXT-PAIR. It

remains to show—without reference to=η—that
+∼ is transitive. We dedicate the remainder of this

section to that task.

1034 A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing

Let #D ≥ 1 denote the following measure on derivationsD :: w
+∼ w′:

#AQ+-FUN-PAIR(D1,D21,D22) = 1 + #D1 + max(#D21,#D22)
#AQ+-PAIR-FUN(D11,D12,D2) = 1 + max(#D11,#D12) + #D2

#r(D1, . . . ,Dn) = 1 + max{#Di | 1 ≤ i ≤ n}

Here,r stands for any other rule application, or more precisely, a rule which has a counterpart in the
original algorithmic equality judgementw ∼ w′. Hence,#D is just the height of derivationD if D
corresponds to a derivation ofw ∼ w′. Since ruleAQ+-FUN-PAIR stands for a pair of derivations
D1 :: λxt ∼ n andD2 :: n ∼ (r, s), its weight is derived for the sum of the weight of these derivations;
and similarly forAQ+-PAIR-FUN.

Lemma 8.1. (+∼ is transitive)
Let ~e be a possibly empty list of eliminations.

1. If D1 :: n
+∼ w andD2 :: w

+∼ n′ thenE :: n
+∼ n′.

2. If D1 :: w
+∼ n~e andD2 :: n

+∼ n′ thenE :: w
+∼ n′ ~e.

3. If D1 :: n
+∼ n′ andD2 :: n′ ~e

+∼ w thenE :: n
+∼ w.

4. If D1 :: w1
+∼ w2 andD2 :: w2

+∼ w3 thenE :: w1
+∼ w3.

In all cases,#E < #D1 + #D2.

Proof:
Simultaneously by induction on#D1 + #D2. In the remainder of this proof, leave# implicit. First, we
prove (1):

• CaseD1,D2 :: x
+∼ x. ThenE :: x

+∼ x with 1 = E < D1 +D2 = 2.

• Case

D1 =

D11

n1
+∼ n2

D12

s1↓
+∼ s2↓

n1 s1
+∼ n2 s2

D2 =

D21

n2
+∼ n3

D22

s2↓
+∼ s3↓

n2 s2
+∼ n3 s3

E1 :: n1
+∼ n3 E1 < D11 +D21 first ind. hyp.

E2 :: s1↓
+∼ s3↓ E2 < D12 +D22 second ind. hyp.

E :: n1 s1↓
+∼ n3 s3↓ E = E1 + E2 + 1 < D1 +D2 AQ+-NE-FUN

• Casen1 p
+∼ n2 p andn2 p

+∼ n3 p: Similarly.

A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing 1035

• Case

D1 =

D′
1

n x
+∼ t↓

n
+∼ λxt

x 6∈ FV(n) D2 =

D′
2

t↓ +∼ n′ x

λxt
+∼ n′

x 6∈ FV(n′)

E ′ :: n x
+∼ n′ x E ′ < D′

1 +D′
2 ind. hyp.

E :: n
+∼ n′ E < E ′ < D1 +D2 inversion

• Case

D1 =

D11

n L
+∼ r↓

D12

n R
+∼ s↓

n
+∼ (r, s)

D2 =

D21

r↓ +∼ n′ L

D22

s↓ +∼ n′ R

(r, s) +∼ n′

E1 :: n L
+∼ n′ L E1 < D11 +D21 ind. hyp.

E :: n
+∼ n′ E < E1 < D1 +D2 inversion

For (2), consider the cases:

• Casew is neutral and~e is empty: By (1).

• Casew = n0 s0 and

D1 =

D11

n0
+∼ n~e

D12

s0↓
+∼ s↓

n0 s0
+∼ n~e s

D2

n
+∼ n′

E ′ :: n0
+∼ n′ ~e E ′ < D11 +D2 ind. hyp.(D11 +D2 < D1 +D2)

E :: n0 s0
+∼ n′ ~e s E = 1 + max(E ′,D12) < D1 +D2 AQ+-NE-FUN

• Casew = n0 p similar.

• Casew = λxt and

D1 =

D′
1

t↓ +∼ n~e x

λxt
+∼ n~e

D2

n
+∼ n′

1036 A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing

E ′ :: t↓ +∼ n′ ~e x E ′ < D′
1 +D2 ind. hyp.

E :: λxt
+∼ n′ ~e E < D′

1 +D2 + 1 = D1 +D2 AQ+-EXT-FUN-NE

• Case

D1 =

D11

r↓ +∼ n~e L

D12

s↓ +∼ n~eR

(r, s) +∼ n~e

D2

n
+∼ n′

E1 :: r↓ +∼ n′ ~e L E1 < D11 +D2 ind. hyp.

E2 :: s↓ +∼ n′ ~eR E2 < D12 +D2 ind. hyp.

E :: (r, s) +∼ n′ ~e E = 1 + max(E1, E2) < D1 +D2 AQ+-EXT-PAIR-NE

Statement (3) is symmetrical to (2) and can be proven analogously. For (4), all of the following cases are
easy:

• Caseλxt
+∼ n andn

+∼ λxt′.

• Caseλxt
+∼ λxt′ andλxt′

+∼ n (plus symmtrical case).

• Caseλxt1
+∼ λxt2 andλxt2

+∼ λxt3.

• Case(r, s) +∼ n andn
+∼ (r′, s′).

• Case(r, s) +∼ (r′, s′) and(r′, s′) +∼ n (plus symmtrical case).

• Case(r1, s1)
+∼ (r2, s2) and(r2, s2)

+∼ (r3, s3).

The following cases introduce a relation between a function and a pair.

• Case

D1 =

D′
1

t↓ +∼ n x

λxt
+∼ n

x 6∈ FV(n) D2 =

D21

n L
+∼ r↓

D22

n R
+∼ s↓

n
+∼ (r, s)

E :: λxt
+∼ (r, s) by AQ+-FUN-PAIR. E = 1 +D′

1 + max(D21,D22) < D1 +D2.

• Case(r, s) +∼ n andn
+∼ λxt. Symmetrical.

The remaining cases eliminate a relation between a function or a pair. We only spell out these cases
where the second relation is of this kind, the other cases are analogously.

A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing 1037

• Case (x 6∈ FV(n, n′))

D1 =

D′
1

n x
+∼ t↓

n
+∼ λxt

D2 =

D′
2

t↓ +∼ n′ x

D′
3

n′ L
+∼ r↓

D′
4

n′ R
+∼ s↓

λxt
+∼ (r, s)

E1 :: n x
+∼ n′ x E1 < D′

1 +D′
2 ind.hyp. onD′

1,D′
2

E2 :: n
+∼ n′ 1 + E2 < D′

1 +D′
2 inversion onE1

E3 :: n L
+∼ n′ L E3 < D′

1 +D′
2 AQ+-NE-PAIR

E4 :: n R
+∼ n′ R E4 < D′

1 +D′
2 AQ+-NE-PAIR

E5 :: n L
+∼ r↓ E5 < E3 +D′

3 < D1 +D2 ind.hyp. onE3,D′
3

E6 :: n R
+∼ s↓ E6 < E4 +D′

4 < D1 +D2 ind.hyp. onE4,D′
4

E :: n
+∼ (r, s) E = 1 + max(E5, E6) < D1 +D2 AQ+-EXT-NE-PAIR

• Case (x 6∈ FV(n, n′))

D1 =

D′
1

t↓ +∼ t′↓

λxt
+∼ λxt′

D2 =

D21

t′↓ +∼ n′ x

D22

n′ L
+∼ r↓

D23

n′ R
+∼ s↓

λxt′
+∼ (r, s)

E ′ :: t↓ +∼ n′ x E ′ < D′
1 +D21 ind.hyp. onD′

1,D21

E :: λxt
+∼ (r, s) E = 1 + E ′ + max(D22,D23) < D1 +D2 AQ+-FUN-PAIR

• Case

D1 =

D11

r↓ +∼ n L

D12

s↓ +∼ n R

D13

n x
+∼ t′↓

(r, s) +∼ λxt′
x 6∈ FV(n)

D2 =

D21

t↓ +∼ n′ x

D22

n′ L
+∼ r↓

D23

n′ R
+∼ s↓

λxt
+∼ (r, s)

x 6∈ FV(n′)

1038 A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing

E1 :: n x
+∼ n′ x E1 < D13 +D21 ind. hyp.

E2 :: n L
+∼ n′ L E2 < D13 +D21 inversion

E3 :: n R
+∼ n′ R E3 < D13 +D21 inversion

E4 :: r↓ +∼ n′ L E4 < D11 + E2 < D11 +D13 +D21 ind. hyp.

E5 :: s↓ +∼ n′ R E5 < D12 + E3 < D12 +D13 +D21 ind. hyp.

E6 :: r↓ +∼ r′↓ E6 < E4 +D22 < D11 +D13 +D21 +D22 ind. hyp.

E7 :: s↓ +∼ s′↓ E7 < E5 +D22 < D12 +D13 +D21 +D22 ind. hyp.

E :: (r, s) +∼ (r′, s′) E = 1 + max(E6, E7) < D1 +D2 AQ+-EXT-PAIR-PAIR

We have three cases left, which can be proven similarly to the previous ones.

• Casen
+∼ (r, s) and(r, s) +∼ λxt.

• Case(r, s) +∼ (r′, s′) and(r′, s′) +∼ λxt.

• Caseλxt
+∼ (r, s) and(r, s) +∼ λxt′.

ut

9. Decidability

By completeness of algorithmic equality, every welltyped term is weakly normalizing (Cor 7.1). On
weakly normalizing terms, the equality algorithm terminates, as we will see in this section.

9.1. Decidability of Equality

We have shown that two judgmentally equal termst, t′ weak-head normalize tow,w′ and there exists
a derivation ofw ∼ w′, hence, the equality algorithm, which searches deterministically for such a
derivation, terminates with success. What remains to show is that the queryt↓ ∼ t′↓ terminates for all
welltyped t, t′, either with success, if the derivation can be closed, or with failure, in case the search
arrives at a point where there is no matching rule.

For a derivationD of algorithmic equality, we define the measure|D| which denotes the number of
rule applications on the longest branch ofD, counting the rulesAQ-EXT-FUN andAQ-EXT-PAIR twice.3

Lemma 9.1. (Termination of equality)
If D1 :: w1 ∼ w1 andD2 :: w2 ∼ w2 then the queryw1 ∼ w2 terminates.

Proof:
By induction on|D1| + |D2|. There are many cases to consider. First we consider neutralw1, w2, for
instance:
3A similar measure is used by Goguen [10] to prove termination of algorithmic equality restricted to pureλ-terms [6].

A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing 1039

• Case:w1 ≡ x andw2 ≡ n2 s2. Since there is no rule with a conclusion of the shapex ∼ n2 s2,
the query fails.

• Case:w1 ≡ n1 s1 andw2 ≡ n2 s2. RuleAQ-NE-FUN matches. By the first induction hypothesis,
n1 ∼ n1 andn2 ∼ n2, hence, the subqueryn1 ∼ n2 terminates. Since by the second induction
hypothesis,s1 ↘ w′

1, s2 ↘ w′
2, w′

1 ∼ w′
1, andw′

2 ∼ w′
2, the subqueryw′

1 ∼ w′
2 terminates as

well. Hence, the whole query terminates.

The other neutral cases work similarly. Let us consider some cases where at least one of the weak head
normal forms is not neutral.

• Casew1 ≡ λxr andw2 ≡ (t, t′). There is no matching rule, the query fails.

• Casew1 ≡ n andw2 ≡ (t, t′). Rule AQ-EXT-PAIR matches. We apply the induction hypothesis
to the derivationsD̂1 :: n L ∼ n L andD′

2 :: t↓ ∼ t↓, which is legal since|D1| + |D2| =
|D1|+ |D′

2|+2 > (|D1|+1)+ |D′
2| = |D̂1|+ |D′

2|. Hence, the first subqueryn L ∼ t↓ terminates,
and, by a similar argument, also the second subqueryn R ∼ t′↓.

• Casew1 ≡ n andw2 ≡ λxr. RuleAQ-EXT-FUN matches. Sincex ∼ x is a derivation of height
one, we can apply the induction hypothesis, with justification similar to the last case, on the only
subqueryn x ∼ r↓.

ut

Theorem 9.1. (Decidability of equality)
If Γ ` t, t′ : C then the queryt↓ ∼ t′↓ succeeds or fails finitely and decidesΓ ` t = t′ : C.

Proof:
By Theorem 7.1,t ↘ w, t′ ↘ w′, w ∼ w, andw′ ∼ w′. By the previous lemma, the queryw ∼ w′

terminates. Since by soundness and completeness of the algorithmic equality,w ∼ w′ if and only if
Γ ` t = t′ : C, the query decides judgmental equality. ut

9.2. Termination of Type Checking

The termination of the type checker is a consequence of termination of equality for welltyped objects.

Lemma 9.2. (Termination of type checking)
Let Γ ` ok.

1. The queryΓ ` t ⇓ ? 6≡Type terminates.

2. If Γ ` C :Type then the queryΓ ` t ⇑ C terminates.

Proof:
Simultaneously by induction ont. The inference succeeds directly in caset ≡ x with rule INF-VAR, and
fails immediately in caset ≡ c, t ≡ λxr, or t ≡ (t1, t2). We considert ≡ r s. Then ruleINF-FUN-E

matches.

INF-FUN-E
Γ ` r ⇓ Fun A (λxB) Γ ` s ⇑ A

Γ ` r s ⇓ B[s/x]

1040 A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing

queryΓ ` r ⇓ ? terminates induction hypothesis

Γ ` r ⇓ C &
C ≡ Fun A (λxB) otherwise fail

Γ ` r : Fun A (λxB) inference sound (Thm. 4.1)

Γ ` Fun A (λxB) :Type syntactic validity

Γ ` A :Type inversion

queryΓ ` s ⇑ A terminates induction hypothesis

Γ ` s ⇑ A otherwise fail

Γ ` s : A checking sound (Thm. 4.1)

Γ, x :A ` B :Type inversion

Γ ` B[s/x] :Type substitution (Lemma 2.1)

Γ ` r s ⇓ B, query successful

The remaining caset ≡ r p is treated analogously. For the termination of checking, let us start with case
t ≡ (t1, t2), where ruleCHK-PAIR-I matches.

CHK-PAIR-I
Γ ` t1 ⇑ A Γ ` t2 ⇑ B[t1/x]

Γ ` (t1, t2) ⇑ Pair A (λxB)

Using the induction hypotheses, we basically need to show thatΓ ` B[t1/x] : Type if Γ ` t1 ⇑ A
succeeds. The caset ≡ λxr matches ruleCHK-FUN-I and is treated similarly. In the remaining cases,
rule CHK-INF fires.

CHK-INF
Γ ` r ⇓ A A ∼ C

Γ ` r ⇑ C

By induction hypothesis, the inference algorithm terminates. IfΓ ` r ⇓ A thenΓ ` A :Type, hence the
equality check terminates by Lemma 9.1, which implies termination of the type checker. ut

Lemma 9.3. (Termination of type well-formedness)
If Γ ` ok then the queryΓ ` A ⇓Type terminates.

Proof:
By induction onA, using the previous lemma in caseA ≡ El t. ut

9.3. Completeness of Type Checking

Once we have solved the hard problem of deciding equality, the decidability of typing is easy, provided
we restrict tonormalterms.

Normal and neutral terms. We introduce two predicatest ⇑ (t is normal) andt ⇓ (t is neutral).

c ⇓ x ⇓
r ⇓ s ⇑

r s ⇓
r ⇓

r p ⇓
r ⇓
r ⇑

t ⇑
λxt ⇑

r ⇑ s ⇑
(r, s) ⇑

A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing 1041

Theorem 9.2. (Completeness of type checking)
1. If D :: t ⇓ andΓ ` t : C 6≡Type thenΓ ` t ⇓ A andA ∼ C.

2. If D :: t ⇑ andΓ ` t : C 6≡Type thenΓ ` t ⇑ C.

Proof:
Simultaneously by induction onD. ut

Corollary 9.1. (Completeness of type well-formedness)
If D :: Γ ` A :Type andA ⇓ thenΓ ` A ⇓Type.

Proof:
By induction onD. In caseA ≡ El t, the premiseA ⇓ forcest ⇑, hence we can apply the previous
theorem. ut

10. Conclusion

We have presented a sound and complete conversion algorithm forMLFΣ. The completeness proof builds
on PERs over untyped expressions, hence, we need—in contrast to Harper and Pfenning’s completeness
proof for type-directed conversion [13]—no Kripke model and no notion of erasure, what we consider an
arguably simpler procedure. We see in principle no obstacle to generalize our results to type theories with
type definition by cases (large eliminations), whereas it is not clear how to treat them with a technique
based on erasure.

The disadvantage of untyped conversion, compared to type-directed conversion, is that it cannot
handle cases where the type of a term provides more information on equality than the shape of a terms,
e. g., unit types, singleton types and signatures with manifest fields [8].

A more general proof of completeness? Our proof uses aλ-model with fullβ-equality thanks to the
ruleDEN-β. We had also considered a weaker model (withoutDEN-β andDEN-IRR, but withDEN-FUN-β
andDEN-PAIR-β) which only equates weakly convertible objects. Combined with extensional PERs this
would have been the model closest to our algorithm. But due to the use of substitution in the declarative
formulation, we could not showMLFΣ’s rules to be valid in such a model. Whether it still can be done,
remains an open question.

Related work. The second author, Pollack, and Takeyama [8] present a model forβη-equality for an
extension of the logical framework by singleton types and signatures with manifest fields. Equality is
tested byη-expansion, followed byβ-normalization and syntactic comparison. In contrast to this work,
no syntactic specification of the framework and no incremental conversion algorithm are given.

Scḧurmann and Sarnat [19] have been working on an extension of the Edinburgh Logical Framework
(ELF) byΣ-types (LFΣ), following Harper and Pfenning [13]. In comparison toMLFΣ, syntactic validity
(Lemma 2.5) and injectivity are non-trivial in their formulation of ELF. Robin Adams [2] has extended
Harper and Pfenning’s algorithm to Luo’s logical framework (i. e., MLF with typedλ-abstraction) with
Σ-types and unit.

Goguen [9] gives a typed operational semantics for Martin-Löf’s logical framework. An extension
to Σ-types has to our knowledge not yet been considered. Recently, Goguen [10] has proven termination

1042 A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing

and completeness for both the type-directed [13] and the shape-directed equality [6] from the standard
meta-theoretical properties (strong normalization, confluence, subject reduction, etc.) of the logical
framework. He also proposes a method to checkβη-equality forΣ- and singleton types by a sequence
of full η-expansion followed byβ-reduction [11].

Acknowledgments. We are grateful to Lionel Vaux whose clear presentation of models for this implicit
calculus [21] provided a guideline for our model construction. Thanks to Ulf Norell for proof-reading
an earlier version of this article. The first author is indebted to Frank Pfenning who taught him type-
directed equality and bidirectional type-checking at Carnegie Mellon University in 2000, and to Carsten
Scḧurmann for communication on LFΣ.

APPENDIX.

A. Surjective Pairing Destroys Confluence

Klop [15, pp. 195–208] shows that the untypedλ-calculus with the surjective pairing reduction(r L, r R) −→
r is not confluent (Church-Rosser). It is, however, locally confluent (weakly Church-Rosser), hence, be-
cause of Newman’s Lemma, only a term with an infinite reduction sequence can fail to be confluent.
Klop provides the following example.

Y := (λxλy. y (xx y)) Turing’s fixed-point combinator

e := z free variable (or the termΩ)

c := Y (λcλa. e (a L, (c a) R))
a := Y c

Sincec t −→+ e (t L, (c t) R) anda −→+ c a, we can construct the following reduction sequences:

c a −→+ e (a L, (c a) R) −→+ e ((c a) L, (c a) R) −→+ e (c a)
c a −→+ c (c a) −→+ c (e (c a))

The end reducts of both sequences cannot be joined again.

B. On Transitivity of Algorithmic Equality

While transitivity does not hold for the pure algorithmic equality (see Remark 3.1), it can be established
for terms of the same type. The presence of types forbids comparison of function values with pair values,
the stepping stone for transitivity of the untyped equality.

For a derivationD of algorithmic equality, we define the measure|D| which denotes the number of
rule applications on the longest branch ofD, counting the rulesAQ-EXT-FUN andAQ-EXT-PAIR twice.4

We will use this measure for the proof of transitivity and termination of algorithmic equality.

4A similar measure is used by Goguen [10] to prove termination of algorithmic equality restricted to pureλ-terms [6].

A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing 1043

Lemma B.1. (Transitivity of typed algorithmic equality)
1. Let Γ ` n1 : C1, Γ ` n2 : C2, andΓ ` n3 : C3. If D :: n1 ∼ n2 andD′ :: n2 ∼ n3 then

n1 ∼ n3.

2. LetΓ ` w1, w2, w3 : C. If D :: w1 ∼ w2 andD′ :: w2 ∼ w3 thenw1 ∼ w3.

3. LetΓ ` t1, t2, t3 : C. If t1↓ ∼ t2↓ andt2↓ ∼ t3↓ thent1↓ ∼ t3↓.

Proof:
The third proposition is an immediate consequence of the second, using soundness of weak head eval-
uation. We prove 1. and 2. simultaneously by induction on|D| + |D′|, using inversion for typing and
soundness of algorithmic equality.

• Case:

AQ-NE-FUN
n1 ∼ n2 s1↓ ∼ s2↓

n1 s1 ∼ n2 s2
AQ-NE-FUN

n2 ∼ n3 s2↓ ∼ s3↓
n2 s2 ∼ n3 s3

Γ ` ni : Fun Ai (λxBi) &

Γ ` si : Ai inversion fori = 1, 2, 3
n1 ∼ n3 first ind. hyp.

Γ ` n1 = n2 = n3 : Fun A1 (λxB1) &

Γ ` Fun A1 (λxB1) = Fun A2 (λxB2) :Type &

Γ ` Fun A2 (λxB2) = Fun A3 (λxB3) :Type soundness of∼
Γ ` A1 = A2 = A3 :Type injectivity

Γ ` si : A1 i = 1, 2, 3, EQ-CONV

s1↓ ∼ s3↓ second ind. hyp.

n1 s1↓ ∼ n3 s3↓ AQ-NE-FUN

• In the following case,x is chosen such thatx 6∈ FV(n).

AQ-EXT-FUN
(λxt1)@x ∼ (λxt2)@x

λxt1 ∼ λxt2
AQ-EXT-FUN

(λxt2)@x ∼ n@x

λxt2 ∼ n

C ≡ Fun A (λxB) &

Γ, x :A ` t1, t2 : B inversion

(λxti)@x↘ wi for i = 1, 2, assumption

ti ↘ wi for i = 1, 2, def. of@
Γ ` ti = wi : B soundness of evaluation

Γ, x :A ` n x : B weakening,FUN-E

w1 ∼ n x ind. hyp.

(λxt1)@x ∼ n@x sincen@x↘ n x

λxt1 ∼ n AQ-EXT-FUN

1044 A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing

• Case:

AQ-EXT-FUN
(λxt1)@x ∼ n2@x

λxt1 ∼ n2
n2 ∼ n3

C ≡ Fun A (λxB) &

Γ, x :A ` t1 : B inversion

Γ, x :A ` ni@x : B for i = 2, 3, weakening,FUN-E

n2@x ∼ n3@x AQ-NE-FUN

(λxt1)@x ∼ n3@x ind. hyp.

λxt1 ∼ n3 AQ-EXT-FUN

ut

C. Alternative to Inductive-Recursive Definition

In section 5.2 we have defined intensional type equalityV = V ′ ∈ Type and type interpretation[V]
simultaneously by induction-recursion. In the following, we give conventional definitions of the two
concepts.

Type interpretation. Type interpretation[] ∈ D ⇀ Rel is a partial function specified by the following
equations.

INT-SET-F [Set] = Set
INT-SET-E [El v] = E`(v)
INT-FUN-F [Fun V F] = Fun([V], v 7→ [F v])
INT-PAIR-F [Pair V F] = Pair([V], v 7→ [F v])

Lemma C.1. Type interpretation[] ∈ D ⇀ Rel is a well-defined partial function.

Proof:
Well-definedness, i. e., thatV = V ′ implies [V] = [V ′], follows by injectivity and pairwise distinct-
ness of type constructors. The latter guarantees that we can define the type interpretation by pattern
matching althoughD is not necessarily a free structure. For instance, in the absence of the inequality
Set 6= Fun V F (DEN-SET-NOT-DEP), the defining equations of type interpretation could imply the in-
consistencySet = Fun([V], v 7→ [F v]). Injectivity proves that, e. g.,[Fun V F] = [Fun V ′ F ′] if
Fun V F = Fun V ′ F ′, since thenV = V ′ andF = F ′ by law DEN-DEP-INJ. ut

A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing 1045

Intensional type equality Type ∈ Rel is is given inductively by the following rules. Note that rule
TYEQ-DEP has an infinitary premise.

TYEQ-SET-F
Set = Set ∈ Type

TYEQ-SET-E
v = v′ ∈ Set

El v = El v′ ∈ Type

TYEQ-DEP
V = V ′ ∈ Type F v = F ′ v′ ∈ Type for all (v, v′) ∈ [V]

c V F = c V ′ F ′ ∈ Type
c ∈ {Fun,Pair}

In the last rule, if[V] is not defined, the quantification is to be read as empty.
The next lemma proves the following: For all semantical typesV ∈ Type, the interpretation[V]

is a well-defined PER, and intensionally equal types have the same interpretation. Together,[] ∈
Fam(Type).

Lemma C.2. (Soundness of intensional type equality)
If D :: V = V ′ ∈ Type then[V], [V ′] ∈ Per and[V] = [V ′].

Proof:
By induction on the ordinal height ofD. We consider the following case:

V = V ′ ∈ Type F v = F ′ v′ ∈ Type for all v = v′ ∈ [V]
Fun V F = Fun V ′ F ′ ∈ Type

We have to show thatFun([V], v 7→ [F v]) andFun([V ′], v 7→ [F ′ v]) are PERs and equal. By induction
hypothesis,[V] and[V ′] are PERs and equal. Assumev = v′ ∈ [V] arbitrary. We may use the induction
hypothesis on the assumptionsF v = F ′ v, F v′ = F ′ v′ ∈ Type to deduce[F v] = [F v′] ∈ Per, hence,
the familyF , defined byF(v) := [F v], is in Fam([V]), sincev andv′ were arbitrary. Analogously, the
second familyF ′, whereF ′(v) := [F ′ v], it holds thatF ′ ∈ Fam([V ′]). By Lemma 5.2,Fun([V],F)
andFun([V ′],F ′) are PERs. Also by induction hypothesis, we obtain[F v] = [F ′ v] for arbitraryv, so
the two familiesF andF ′ are equal. This entails our goal. ut

Finally, we can prove thatType is a itself a PER.

Lemma C.3. (Soundness of intensional type equality)
1. If D :: V1 = V2 ∈ Type andV2 = V3 ∈ Type thenV1 = V3 ∈ Type.

2. If D :: V = V ′ ∈ Type thenV ′ = V ∈ Type.

Proof:
Each by induction on the ordinal height ofD. For transitivity (1.), we consider the case:

V1 = V2 ∈ Type F1 v1 = F2 v2 ∈ Type for all v1 = v2 ∈ [V]
Fun V1 F1 = Fun V2 F2 ∈ Type

V2 = V3 ∈ Type F2 v2 = F3 v3 ∈ Type for all v2 = v3 ∈ [V]
Fun V2 F2 = Fun V3 F3 ∈ Type

1046 A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing

By soundness of intensional type equality (Lemma C.2), we have[V1] = [V2] ∈ Per, and by the first
induction hypothesis,V1 = V3 ∈ Type. Assume arbitraryv = v′ ∈ [V1]. Since[V1] is a PER,v′ = v′ ∈
[V1], hence, alsov′ = v′ ∈ [V2]. By assumptionF1 v = F2 v′ ∈ Type andF2 v′ = F3 v′ ∈ Type, hence,
we can apply the induction hypothesis to obtainF1 v = F3 v′ ∈ Type. Sincev andv′ were arbitrary
Fun V1 F1 = Fun V3 F3 ∈ Type by ruleTYEQ-DEP. ut

References

[1] Abel, A.: An Implementation of the Logical Framework withΣ-Types, Haskell code, available at
http://www.tcs.ifi.lmu.de/˜abel/MLFSigma.lhs, November 2004.

[2] Adams, R.: Decidable Equality in a Logical Framework with Sigma Kinds, 2001, Unpublished technical
report, available on http://www.cs.man.ac.uk/˜radams/.

[3] Barendregt, H.:The Lambda Calculus: Its Syntax and Semantics, North Holland, Amsterdam, 1984.

[4] Barendregt, H., Coppo, M., Dezani-Ciancaglini, M.: A Filter Lambda Model and the Completeness of Type
Assignment,The Journal of Symbolic Logic, 48(4), 1983, 931–940.

[5] Benzm̈uller, C., Brown, C. E., Kohlhase, M.: Higher-Order Semantics and Extensionality,The Journal of
Symbolic Logic, 69(4), December 2004, 1027–1088.

[6] Coquand, T.: An Algorithm for Testing Conversion in Type Theory, in:Logical Frameworks(G. Huet,
G. Plotkin, Eds.), Cambridge University Press, 1991, 255–279.

[7] Coquand, T.: An Algorithm for Type-Checking Dependent Types,Mathematics of Program Construction.
Selected Papers from the Third International Conference on the Mathematics of Program Construction (July
17–21, 1995, Kloster Irsee, Germany), 26, Elsevier Science, May 1996.

[8] Coquand, T., Pollack, R., Takeyama, M.: A Logical Framework with Dependently Typed Records,Typed
Lambda Calculus and Applications, TLCA’03, 2701, Springer, 2003.

[9] Goguen, H.: Soundness of the Logical Framework for Its Typed Operational Semantics,Typed Lambda
Calculi and Applications, TLCA 1999(J.-Y. Girard, Ed.), 1581, Springer, L’Aquila, Italy, 1999.

[10] Goguen, H.: Justifying Algorithms forβη Conversion,Foundations of Software Science and Computational
Structures, 8th International Conference, FOSSACS 2005, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings(V. Sassone,
Ed.), 3441, Springer, 2005, ISBN 3-540-25388-2.

[11] Goguen, H.: A Syntactic Approach to Eta Equality in Type Theory,Proceedings of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2005, Long Beach, California, USA,
January 12-14, 2005(J. Palsberg, M. Abadi, Eds.), ACM, January 2005, ISBN 1-58113-830-X.

[12] Harper, R., Honsell, F., Plotkin, G.: A Framework for Defining Logics,Journal of the Association of Com-
puting Machinery, 40(1), January 1993, 143–184.

[13] Harper, R., Pfenning, F.: On Equivalence and Canonical Forms in the LF Type Theory,ACM Transactions
on Computational Logic, 6(1), 2005, 61–101, ISSN 1529-3785.

[14] Joachimski, F., Matthes, R.: Short Proofs of Normalization,Archive of Mathematical Logic, 42(1), 2003,
59–87.

[15] Klop, J. W.: Combinatory Reducion Systems,Mathematical Center Tracts, 27, 1980.

A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing 1047

[16] Nordstr̈om, B., Petersson, K., Smith, J.: Martin-Löf’s Type Theory,Handbook of Logic in Computer Science,
5, Oxford University Press, October 2000.

[17] Pierce, B. C., Turner, D. N.: Local Type Inference,POPL 98: The 25TH ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, San Diego, California, 1998.

[18] Plotkin, G. D.: The lambda-Calculus is omega-Incomplete,The Journal of Symbolic Logic, 39(2), 1974,
313–317.

[19] Sarnat, J.: LFΣ: The Metatheory of LF withΣ types, 2004, Unpublished technical report, kindly provided
by Carsten Scḧurmann.

[20] Vanderwaart, J. C., Crary, K.:A Simplified Account of the Metatheory of Linear LF, Technical report, School
of Computer Science, Carnegie Mellon University, Pittsburgh, 2002.

[21] Vaux, L.: A type system with implicit types, June 2004, English version of his mémoire de mâıtrise.

[22] Vouillon, J.: Subtyping Union Types,Computer Science Logic, CSL’04(J. Marcinkowski, A. Tarlecki, Eds.),
3210, Springer, 2004.

