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1.

Type checking in dependent type theories requires comparison of expressions for equality. In theories

Abstract. Martin-Lof's Logical Framework is extended by strohgtypes and presented via judg-
mental equality with rules for extensionality and surjective pairing. Soundness of the framework
rules is proven via a generic PER model on untyped terms. An algorithmic version of the framework
is given through an untypesl-equality test and a bidirectional type checking algorithm. Complete-
ness is proven by instantiating the PER model witbquality ong-normal forms, which is shown
equivalent to the algorithmic equality.

Introduction

with g-equality, an apparent method is to normalize the objects and then compare-tieeimal forms
syntactically. In the theory we want to consider, an extension of Marbisllogical framework with
Bn-equality by dependent surjective pairs (strondgypes), which we calMLFyx, a naivenormalize

and compare syntacticallgpproach fails sincgn-reduction with surjective pairing is known to be non-

confluent [15]. Furthermore, the surjective-pairing reduction does not preserve types.
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We therefore advocate the incrementalconvertibility test which has been given by the second
author for dependently typedterms [6], and extend it to pairs. The algorithm computes the weak head
normal forms of the conversion candidates, and then analyzes the shape of the normal forms. In case the
head symbols do not match, conversion fails early. Otherwise, the subterms are recursively weak head
normalized and compared. There are two flavors of this algorithm.

Type-directed conversion. In this style, the type of the two candidates dictates the next step in the
algorithm. If the candidates are of function type, both are applied to a fresh variable, if they are of
pair type, their left and right projections are recursively compared, and if they are of base type, they are
compared structurally, i. e., their head symbols and subterms are compared. Type-directed conversion
has been investigated by Harper and Pfenning [13]. The advantage of this approach is that it can handle
cases where the type provides extra information which is not present already in the shape of terms.
An example is the unit type: any two terms of unit type, e.g., two variables, can be considered equal.
Harper and Pfenning report difficulties in showing transitivity of the conversion algorithm, in case of
dependent types. To circumvent this problem, they erase the dependencies and obtain simple types to
direct the equality algorithm. In the theory they consider, the Edinburgh Logical Framework [12], erasure
is sound, but in theories with types defined by cases (large eliminations), erasure is unsound and it is not
clear how to make their method work. In this article, we investigate an alternative approach.

Shape-directed (untyped) conversion. As the name suggests, the shape of the candidates directs the
next step. If one of the objects is\aabstraction, both objects are applied to a fresh variable, if one object

is a pair, the algorithm continues with the left and right projections of the candidates, and otherwise, they
are compared structurally. Since the algorithm does not depend on types, it is in principle applicable to
many type theories with functions and pairs. In this article, we prove it compleblibs;, but since we

are not using erasure, we expect the proof to extend to theories with large eliminations.

Main technical contributions of this article.

1. We extend the untyped type-checking algorithm of the second author [6] to a type system with
Y-types and surjective pairing. Recall that reduction in the untypedliculus with surjective
pairing is not Church-Rosser [3] and, thus, one cannot use a presentation of this type system with
conversion defined on raw terrhs.

2. We take a modular approach for showing the completeness of the conversion algorithm. This result
is obtained using a special instance of a general PER model construction. Furthermore this special
instance can be describagriori without references to the typing rules.

Contents. We start with a syntactical description ®fLFy;, in the style of equality-as-judgement (Sec-

tion 2). Then, we give an untyped algorithm to chebkequality of two expressions, which alternates
weak head reduction and comparison phases, plus a bidirectional type checking algorithm for normal
terms (Section 3). The goal of this article is to show that the algorithmic presentatiébFsf is equiv-

alent to the declarative one. Soundness is proven rather directly in Section 4, requiring inversion for

LIn the absence of confluence, one cannot show injectivity of type constructors, hence subject reduction fails.
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the typing judgement in order to establish subject reduction for weak head evaluation. Completeness,
which implies decidability oMLFs, requires construction of a model. Before giving a specific model,

we describe a class of PER (partial equivalence relation) modéid_6f. based on a generic model of

the A-calculus with pairs (Section 5). In Section 6 we turn to the specific model of expressions modulo
B-equality and show thag-equality of 3-normal forms is a partial equivalence, hence, gives rise to a
PER model. In Section 7 we give a proof thaequivalence is decided by the algorithmic equality which
implies that the algorithmic equality serves as basis for a PER model as well. This entails completeness
of the algorithm. We could have done a more direct proof, without the intermediate model involving
n-equality, and this (rather technical) path is taken in Section 8. Decidability of judgmental equality on
well-typed terms ilMLFyx, ensues, which entails that type checking of normal forms is decidable as well
(Section 9).

2. Declarative Presentation oMLFy;

This section presents the typing and equality rules for an extension of Maitis{bgical framework

[16] by dependent pairs. We show some standard properties like weakening and substitution, as well
as injectivity of function and pair types and inversion of typing, which will be crucial for the further
development.

Expressions (terms and types). We do not distinguish between terms and types syntactically. Depen-
dent function types, usually writtdiiz : A. B, are writtenFun A (AxB); similarly, dependent pair types
Yx:A. B are represented Bair A (AzB). We write projectiond. andR postfix. The syntactic entities

of MLFy, are given by the following grammar.

Var > x,Y,z variables

Const > ¢ == Fun | Pair | El | Set constants

Proj > »p = L|R left and right projection
Exp > st s= cla|dat|rs| ()| rp expressions

Ty > A,B,C == Set|Elt|FunA(AzxB) |PairA(AxB) types

Cxt 5 T n= oIz A typing contexts

TypesTy C Exp are distinguished expressions. We identify terms and types upcnversion and
adopt the convention that in conteXfs all variables must be distinct; hence, the context extension
I',x: A presuppose§e: B) ¢ I' for any B.

The inhabitants d$et are type code<€| maps type codes to types. E.lgun Set (Aa. Fun (Ela) (A-.Ela))
is the type of the polymorphic identitya Azx.
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Wellformed context$® I ok.

CXT-EMPTY CXT-EXT m
o F ok I'z:A ok
TypingT" ¢ : A.
HYPFI—ok (xz:A) el CONVFI—t:A ' WA= B:Type
FFz:A '+t:B
SETE I' F ok SETE I' Ft: Set
I' - Set : Type I' FEI£:Type
I'z: A+ B :Type
FUN-F
' F Fun A(A\zB) : Type
FUN-| Mxz:AkFt:B FUN-EF Fr:FunA(AxB) FkFs: A
' b Azt : Fun A(AxB) I' Frs: Bls/x]
ILz:AF B:Type F'ks: A ' +t: Bls/z]
PAIR-F - PAIR-1 -
I' F Pair A (AzB) : Type I' - (s,t): Pair A(A\zB)
PAIR-E-L I' r:PairA(\xB) PAIR-E-R I' - r: PairA(A\zB)
F'FrL:A I' -rR: BlrL/z]

Figure 1. MLFy rules for contexts and typing.
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Judgements are inductively defined relations. T is a derivation of judgement, we writeD :: J.
The type theonMLFy is presented via five judgements:

I' Fok I" is a well-formed context
I' HA:Type Ais awell-formed type
r+¢: A t has typeA
A=A :Type AandA’ are equal types
FHt=t:A t andt’ are equal terms of typa
Typing and well-formedness of types both have the farnt _ : .. We will refer to them by the

same judgemerit + ¢ : A. If we mean typing only, we will requirél # Type. The same applies to the
equality judgements. Typing rules are given in Figure 1, together with the rules for well-formed contexts.
The rules for the equality judgements are given in Figure 2.

Remark 2.1. (Subject reduction fails)

In the context : Pair A (AzB), then-redex(z L, z R) can be given the non-dependent tfaér A (A_. B[z L/x]),
but the reduct not. A closer analysis of this problem leads us to m#er-1: the types ofs andt do

not determine the type dfs, ¢). If the terms appears inB[s/x], then there are at least two different
expressiond3; and B, such thatB; [s/x] = Bs[s/z] = B[s/x], which lead to different types @k, t).

For the remainder of this section we present propertielofs, which have easy syntactical proofs.

In this, we follow roughly the path outlined by Harper and Pfenning [13]. However, there is a metho-
dological difference: In all judgements + J, we presupposE F ok, which is not true for Harper and
Pfenning’s presentation of the logical framework.

Lemma 2.1. (Admissible rules)
1. Reflexivity: fD ::T' Ft: Athenl' Ht=1t: A.

2. Weakening: IfD :: T',TV + J and bothl' + A : Type and(z : B) ¢ (I',I”) for any B, then
L AT - J.

3. Syntactic validity of hypotheses: B :: T' + J and(z: A) € T'thenD’ :: T + A : Type and the
derivationD’ is shorter tharD.

4. Context conversion: ID :: ', z: A, + Jandl' - A = B :Typethenl',z: B,I"  J.

5. Substitution: IfD :: T',z: A, IV  Jandl' s : AthenD',I"[s/x] F J[s/x].

Proof:

Each by induction oD. Syntactic validity of hypotheses requires weakening in caseexT. Substi-
tution requires weakening in cag@-HYP. The only interesting case for context conversioBsHYP,
which needs an application afy-conv. O

Lemma 2.2. (Inversion for types)
1. fD =T FElIt:TypethenD’ :: T k¢ : Set.
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Equivalence, hypotheses, conversion.

E_SYMFI—t:t’:A E—TRANSFI_T:SZA F'ks=t:A
© F-t=t: A Q FkFr=t:A
oo L Fok  @Aer  Thit=t:A D+A=B:Type
Q F''Fx=xz:A4A Q ''kt=¢:B
Sets.
EO-SET-F I' Fok EO-SETE I'Ht=1t:Set
Q T F Set — Set : Type Q T FElt=El{#:Type
Dependent functions.
I A=A :Type I'z:A + B= DB :Type
EQ-FUN-F
I' FFun A(AzB) = Fun A’ (AzB’) : Type
EO-FUN-| Mx:Ak+t=t:B
© T F Azt = Aat’ : Fun A (AzB)
c FUNEF Fr=7r":FunA(A\xB) F'ks=¢:A
© ' mrs=r's: Bls/x]
£ FUNBF,x:AI—t:B kFs: A
Q T+ (Aat)s = t[s/] : Bls/7]
I' -t:FunA(\xB)
EQ-FUN- FV(t
Q T F()\x.tx):t:FunA()\xB)xg ®)

Dependent pairs.

' A=A :Type I'x:A + B= B :Type

FQ-PAIR-F I' - Pair A (AzB) = Pair A’ (A\zB’) : Type
EopaR LEs=s:4 Trt=1t:Bls/a
? I F (s, t)=(s,t):Pair A(\zB)
EQ-PAIR-E-L ['br=r":PairA(\zB) EO-PAIR-E-R ' Fr=r":Pair A(A\xB)
N ''krL=7r'L: A Q FFTR:T’RIB[TL/@']
I'ks: A '+¢:B I'kFs: A I'+¢:B
EQ-PAIR-3-L EQ-PAIR-3-R

FF(s,t)L=s:A 'k (s,t)R=t:B

' Fr:Pair A(AxB)
F(rL, rR) =r: Pair A(AzB)

EQ-PAIR-1)

Figure 2. MLFyx equality rules.
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2. Letc € {Fun,Pair}. f D :T FcA(M\xB) : TypethenD; :T' - A :TypeandDy :: T, z: A
B :Type.
In all cases, the derivatiori®’, D;, andD, are shorter tha.

Proof:
By cases orD, using syntactic validity of hypotheses (2.1.3) for part 2. O

Lemma 2.3. (Functionality for typing)

Letl' Fs=¢:Aandl Fs: A. f DT x: AT +t:Cthenl,IV[s/x] b t[s/z] = t[s'/x] :
Cls/x].

Proof:

By induction onD. We spell out some cases:

¢ In the case of an hypothesis rule, we haue: : A,T” + ok, hence, by the substitution lemma,
I',T'[s/x] - ok. We consider the following subcases:

— The used hypothesis is: A. Since all types il”[s/z] are wellformed, we can iteratively
weaken the assumption of this lemma to obtain the dediréd[s/z] + s = s’ : A. Note
that A = Als/x] sincex cannot be free in.

— The used hypothesis {g: B) € I'. Thenz cannot be free iB andl’,[[s/x] -y =1y : B
is an instance of ruleQ-HYP.

— The used hypothesis iy : B) € I'. Then(y: B[s/x]) € T’[s/z] and we can again use

EQ-HYP.
e Case:
CONV e: AT +t:B [z: ATV - B =C :Type
Ta: AT Ft:C
[,[V[s/z] Ft[s/x] = t[s'/z] : B[s/x] induction hypothesis
FkFs: A assumption
[,[V[s/z] & B[s/x] = C|s/z] : Type substitution lemma
[, [V[s/z] b t[s/z] = t[s'/z] : C[s/x] rule EQ-CONV
e Case:
D:T,z: AT F Fun B\yC : Type
Dy =T,2: AT - B : Type inversion for types
I',I"[s/z] F B[s/x] = B[s'/x] : Type ind. hyp.(D; < D)
Dy ::T,2: AT, y:B F C : Type inversion for types
I, [V[s/z],y:Bls/z] + C[s/z] = C[s'/z] : Type ind. hyp. (D3 < D)
[, T[s/z] F Fun (B[s/z]) \y.Cls/z]
= Fun (B[s'/z]) \y. C[s'/z] : Type rule EQ-FUN-F

[, T[s/z] & (Fun BAyC)[s/x] = (Fun B \yC)[s'/z] : Type properties of substitution
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o Case:
Lz: AT ,y:Brt:C
PN AT F Ayt Fun BayC
[,[V[s/z],y:Bls/z] & t[s/z] = t[s'/z] : C[s/x] induction hypothesis
[, [V[s/z] F My.t[s/z] = \y.t[s'/x] : Fun (Bl[s/z]) \y. C|s/x] rule EQ-FUN-I
[, T[s/x] = (Ayt)[s/z] = (\yt)[s'/x] : (Fun B A\yC)[s/x] properties of substitution
e Case:
[xz: AT Fr:Pair BAyC
PR R T AT FrR: O Ly
I, [V[s/z] Fr[s/x] = r[s' /] : Pair (B[s/x]) \y.C|[s/x] induction hypothesis
[, IV[s/x] FrR[s/z] =rR[s'/x] : (C[s/x])[(r[s/x] L) /y] rule EQ-PAIR-E-R
[, TV[s/z] FrR[s/z] =rR[s'/z] : (C[rL/y])[s/x] properties of substitution
O

Lemma 2.4. (Injectivity)
1. f DT FSet=C:TypeorD :: T' b C = Set : Type thenC = Set.

2.fD:T FEIt=C:TypeorD:T' - C =Elt:TypethenC = Elt'andl’ -t =1t': Set.

3. Letc € {Fun,Pair}. f DT FcA(AxB)=C :TypeorD :: T - C = cA(AzB) : Type then
C=cA (MB)withT - A= A":Typeandl',z: A - B = B’ : Type.

Proof:

By induction onD. Note that in Martin-Iof's LF, injectivity is almost trivial since computation is re-
stricted to the level of terms. This is also true for Harper and Pfenning’s version of the Edinburgh LF
which lacks type-leveh-abstraction [13]. In the Edinburgh LF with type-leveit involves a normaliza-

tion argument and is proven using logical relations [20]. O

Lemma 2.5. (Syntactic validity)
1. Typing: fD :: T Ft: AthenI' I ok and eithetA =TypeorI" - A : Type.

2. Equality: fD::T" Ft=t: Athenl' Ft: A, T -t : A, and eithetA =TypeorI" - A : Type.

Proof:
Simultaneously by induction oR. A few interesting cases are:

e Case:
I'Ft:A T +A=B:Type

CONV
I'-t:B

By induction hypothesis (2.); + B : Type.
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e Case:
I' r:PairA(\zB)

I' -rR:BlrL/z]
By inversion (Lemma 2.2) on the induction hypothedisg : A + B : Type. Also, by rule
PAIR-E-L,I" = rL: A. HenceI' - B[rL/x] : Type by substitution.

PAIR-E-R

e Case:
I' A=A :Type I'z:A + B= B :Type

I' FFun A(AzB) = Fun A’ (A\xB’) : Type

By induction hypothesisI" - A, A" : Type andT',z : A + B,B’ : Type. We inferI" +
Fun A (AxB) : Type directly, by FUN-F, whereas + Fun A’ (AxB’) : Type follows only af-
ter we converted the type afin the context toA’.

EQ-FUN-F

e Case:
EQ-FUN-EP Fr=7":FunA(\xB) F'kFs=4:4
I'Frs=r's: Bls/x]
FkFs,s:A induction hypothesis
' F Fun A(A\zB) : Type induction hypothesis
Iz:AF B :Type inversion for types
I' + Bls/z] : Type substitution lemma
I' + B[s/x] = B[s'/x] : Type functionality for typing
I Fr7 :Fun A(\zB) induction hypothesis
I'-rs: Bls/x] rule FUN-E
I ++'s: B[s'/x] rule FUN-E
I +r's: Bls/x] ruleSEQ-SYM, CONV
e Case:
Mx:Ak+-t=t:B 'kFs=s:A4A
EQ-FUN-(

I' F (\xt) s =t'[s'/z] : Bls/x]
By induction hypothesis" + s : A andl',x : A F B : Type, hence we get the first goal
I' + B[s/x] : Type by the substitution lemma. By functionality for typing we also h&ve-
Bls/x] = B[s'/x] : Type. Another induction hypothesis I3 z: A It : B from which we obtain
the second godl' + t[s/x] : B[s/x] again by substitution. Using substitution on the induction
hypothesed’,z: A - ¢ : Bandl' F ¢ : A entailsT" - t/[s'/x] : B[s'/z] and we can use our
derived type equality witleQ-SYM andcoNnv to finally arrive afl” - t'[s'/x] : B[s/x].

e Case:

F'tt=t:Fun A(A\xB)
I' - (Ax.tx) =t : Fun A (A\xB)
W.l.0.g.,z is not bound by context. By induction hypothesisl’ + ¢,¢ : Fun A (AxB) and

I' - Fun A (AzB) : Type. By inversion for typesl” - A : Type, hence we can apply weakening
to obtainl’,z: A F ¢ : Fun A (AzB). This entails - \z.tx : Fun A (AzB).

EQ-FUN-7

x & FV(t)
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O
Using syntactic validity, the functionality lemma (2.3) needs fewer hypotheses:
Corollary 2.1. (Functionality for typing)
fT Fs=s:Aandl’,z: ATV Ft¢:Cthenl',I"[s/x] F t[s/x] = t[s'/x] : C[s/x].
Lemma 2.6. (Functionality for equality)
fT,2: AT Ft=¢:Candl' Fs=s": Athenl',T"[s/x] F t[s/x] =t'[s'/x] : C[s/x].
Proof:
Direct (cf. Harper and Pfenning [13]).
FkFs: A syntactic validity
[,[[s/x] &+ t[s/z] = t'[s/x] : C[s/x] substitution lemma
Lao: AT Ht:C syntactic validity
I, T[s/z] & t[s/z] =t[s'/x] : C[s/x] functionality for typing
I, [[s/x] & t[s/z] = t'[s'/z] : C[s/x] rule EQ-TRANS
O

Lemma 2.7. (Inversion of Typing)
Let C' # Type.

L. DT Fao:Cthenll FTI'(x) =C :Type.
fD:T F Axt: CthenC =FunA(AxB)andl',z: A -t: B.
.MD:uT Frs:Cthenl' Fr:FunA(AzB)withT +s: Aandl’ + Bls/x] = C : Type.

2.
3 )
4. fD =T F (r,s): CthenC = Pair A(AzB)withT' Fr: Aandl F s: B[r/x].
5. 1fD:T I rL: Athenl F r : Pair A (A\zB)

6

MDD =T FrR:Cthenl |- r: Pair A(AzB) andl’ + B[rL/z] = C : Type.

Proof:

By induction onD. For each shape of termin I + ¢ : C, there are two matching rules. One is the
introduction resp. elimination rule fitting which entails the inversion property trivially. The other one
is ruleconv:

e Case:
I'FXat: C ' -C =C":Type

I'FAet:
By induction hypothesi€” = Fun A (AzB) andT',z : A + ¢ : B. By injectivity, C' =
Fun A" (AzB’) withT - A = A’ : TypeandT',z: A + B = B’ : Type. By conversion and
context conversion we concludex: A’ ¢ : B'.

CONV
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e Case:
Fkrs:C ' -C =C":Type
I'Frs:C

By induction hypothesi$' - 7 : Fun A (AxB) for someA, BwithT" - s: AandIl’ - B[s/x] =
C :Type. We inferT" - B[s/xz] = C’ : Type by transitivity.

CONV

e Case:
trL:A A=A :Type

NV
co I'FrL: A

By induction hypothesis[’ + r : Pair A (AxB). Syntactic validity (Lemma 2.5), inversion for
types (Lemma 2.2), and reflexivity entdil2:: A - B = B : Type, hencel' + Pair A (AzB) =
Pair A’ (AzB) : Type by rule EQ-PAIR-F. The desired” F r : Pair A’ (AzB) follows by CONV.

0

Remark 2.2. (Weaker inversion property for left projection)
The statement “if” + rL : C'thenl" F r : Pair A (AxB) andl’ - A = C : Type” can be proven without
reference to syntactic validity.

3. Algorithmic Presentation

In this section, we present algorithms for deciding equality and for type-checking. The goal of this article
is to show these algorithms sound and complete.

Syntactic classes. The algorithms work on weak head normal fori¥al. For convenience, we intro-
duce separate categories for normal forms which can denote a function and for those which can denote a
pair. In the intersection of these categories live the neutral expressions.

WElIm > e == s|p eliminations

WNe > n == c|z|ne neutral expressions

WFun > wy == n|Azt  weak head function values
WPair > w, == n]|(t,t') weakhead pairvalues
WVal > w == wy|w, weakhead values

Note that typesA € Ty C WNe are always neutral weak head values.

Weak head evaluation. We define simultaneously two judgements:

.-
@\, -

Exp x WVal

-
C WvVal x WEIlim x WVal
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Weak head evaluation\, w.

EVAL-C EVAL-VAR
C C xr Xz
r (@
EVAL-FUN-| ——— EVAL-FUN-E N Wy wy@s N w
Axt N\, Axt TSN\, w
@
EVAL-PAIR-| ———————— EVAL -PAIR-E N Wy wpAp N w
(t, t") \ (t,t) rp N\, W
Active eliminationw@e \, w’.
t[s/x] \, w
ELIM-NE ——— ELIM-FUN —— >
n@Qe \, ne (Azt)@Qs \, w
N\, w N, w
ELIM-PAIR-L ————— ELIM-PAIR-R ——————
(t, )@l \, w (t,#)@R \, w

Weak head evaluation™\, w is equivalent to multi-step weak head reduction to normal form.

Conversion. Two termst,t’ arealgorithmically equalif ¢ \, w, ¢’ \, v/, andw ~ w’ for some
w,w’. We combine these three propositiong fo~ t'|. Similarly, t@Qe ~ t'@Q¢’ shall denoteé@e \, w,
Qe \, w', andw ~ w'. The algorithmic equality on weak head normal forms~ w’ is given
inductively by the following rules:

AQ-C AQ-VAR

c~C xr~xT

n~n' s| ~ s n~n'
AQ-NE-FUN AQ-NE-PAIR ———
ns~n's np~n'p

wQz ~ w'Qr ,
AQ-EXT-FUN ———————— 1z ¢ FV(wy, w})

wfww}

wp@QL ~ w;,@L wp@QR ~ w;@R

/
’lUpNU)p

AQ-EXT-PAIR

For two neutral values, the rules@-NEe-x) are preferred ovesQ-EXT-FUN and AQ-EXT-PAIR. Thus,
conversion is deterministic. It is easy to see that it is symmetric as well.

In our presentation, untyped conversion resembles type-directed conversion. In the terminology
of Harper and Pfenning [13] and Sarnat [19], the first four rulesc, AQ-VAR, AQ-NE-FUN and
AQ-NE-PAIR computestructural equalitywhereas the remaining two, the extensionality ral@sEXT-FUN
andAQ-EXT-PAIR, compute type-directed equality. The difference is that in our formulatiorshbpe
of a value—function or pair— triggers application of the extensionality rules.

Remark 3.1. In contrast to the corresponding equality feterms without pairs [6] (taking awayQ-NE-PAIR
andAQ-EXT-PAIR), this relation isnot transitive. For instancé\z.nx ~ n andn ~ (nL, nR), but not
Az.nx ~ (nL, nR).
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Type checking. Inthe following, we give a bidirectional type checking algorithm [7, 17, 13] for normal
terms. We define simultaneously two judgements:

Cxt x Exp x (Ty U {Type})
Cxt x Exp x Ty

S
e

The judgement” I t || A infers typeA from neutral termsg, I' F ¢ {} C checks whether thg-normal
termt¢ has typeC, andI’ - A |} Type identifies wellformed typedl € Ty.

Type inferencd” ¢t || A.

-
C

I' =r | FunA(A\zB) sy A

INF-VAR ————— INF-FUN-E
' x| T(x) I' Frs| B[s/z]
INE-PAIR-E-L I' Fr | Pair A(\zB) INE-PAIR-E-R I' Fr | PairA(AxB)
FFrLy A I' FrR | BlrL/z]

Type checkind™ + t { A.

CHk-INF ¥4 A~B N 2 AT B
'Fr{B I' F Azt ) Fun A (A\xB)

et A I' -t 1{ B[t/x]
' F(t,t) f Pair A(A\xB)

CHK-PAIR-I
Type well-formednesE + A | Type.

CHK-SETTF ———— CHK-SET-E Lﬁset
I' - Set | Type I' FEIt | Type

THAUType T,2:AF B |Type .
CHK-DEP-F F P
T FcA(\B) | Type ¢ € {Fun, Pair}

Besides the fact that in both judgements and in the context, types are always in weak head normal form,
the algorithm has the invariant that every expression which is evaluated has been checked before. This
principle ensures termination, a byproduct of soundness which we show in the next section.

The algorithms in this section have been prototypically implemented in Haskell using explicit sub-
stitutions [1].

4. Soundness

The soundness proofs for conversion and type-checking in this section are entirely syntactical and rely
crucially on injectivity ofEl, Fun andPair (Lemma 2.4) and inversion of typing (Lemma 2.7). First, we
show soundness of weak head evaluation, which subsumes subject reduction.

Lemma 4.1. (Soundness of weak head evaluation)
LDt wandl' Ft: CthenT Ht=w: C.
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2. fD::w@e\ w andl’ Fwe: Cthenl' Fwe=w":C.

Proof:
Simultaneously by induction o, making essential use of inversion laws.

e Case:
EVAL -FUN-E Wy wyls N w
TS\, W
'krs:C hypothesis
I'r:FunA(\xB) &
'ks: A &
I' - Bls/z] = C : Type inversion
I' -r=wys:FunA(A\zB) first ind. hyp.
I' -rs=wyss: Bls/x] EQ-FUN-E
'rws:C syntactic validity,CONV
'rwrs=w:C second ind. hyp.
I'ktrs=w:C EQ-TRANS
e Case: N
S/ X w
ELIM-FUN t)@s . w

' (\zt)s: C hypothesis
I' Azt : Fun A (\zB) &
I'ks: A &
I' F B[s/z] = C : Type inversion
I'z:A+-t:B inversion
'k (\xt) s = t[s/x] : B[s/x] EQ-FUN-{3
I'F (A\xt) s=t[s/x]: C EQ-CONV
I Ft[s/x]: C syntactic validity
I'Fts/z]=w:C ind. hyp.
FF\zt)s=w:C EQ-TRANS

O

Two algorithmically convertible well-typed expressions must also be equal in the declarative sense.
In case of neutral terms, we also obtain that their types are equal. This is due to the fact that we can read
off the type of the common head variable and break it down through the sequence of eliminations.



A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing 1015

Lemma 4.2. (Soundness of conversion)

1. Neutral non-types: 1D :: n ~ n/ andT’ + n :

F'tn=n:Candl' - C =" :Type.

C # Type andT’ - n’ : C’ # Type then

2. Weak head values: B :: w ~ w’ andl’ - w,w’ : C thenl’ Fw =’ : C.

3. Allexpressions: If| ~t'| andl’ +¢,¢' : Cthenl' -t =1¢":C.

Proof:

The third proposition is a consequence of the second, using soundness of evaluation (Lemma 4.1) and

transitivity. We prove the first two propositions simultaneously by inductio®on

e Case: , /
AQ-NE-FUN -~ ZS — ;/l; sl
'kns:C hypothesis
I' Fn:FunA(AzB) &
I'ks: A &
I' F B[s/z] = C : Type IM-NE-FUN, inversion
rt-n's:C’ hypothesis
I Fn':Fun A (\xB) &
s A &
I - B'[s'/z] = C' : Type IM-NE-FUN, inversion
I Fn=n':FunA(\zB) &
[+ Fun A(AzB) = Fun A’ (A\zB’) : Type firstind. hyp.
' A=A :Type injectivity
r-s:A rule CONV
F'Fs=s:4 second ind. hyp. (3.)
I'z:A B =B :Type injectivity

I' - B[s/z] = B'[s'/x] : Type
' -C=C":Type
't ns=n's":C

functionality
transitivity, symmetry
EQ-FUN-E

e Case (instance 0fQ-EXT-FUN with vy = Azt andfu} =n):

AQ-EXT-FUN (Azt)Qz N w

w~nax

nQzr \, nx

Axt ~n

x & FV(n)
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I'Xaet: C hypothesis
C =FunA(\zB) &
Nxz:ArFt:B inversion
t\ w assumption
Ne:AFt=w:B eval. sound (Lemma 4.1)
I' Fn:FunA(AzB) hypothesis, defC'
I'FXx.nz=n:FunA(\xB) EQ-FUN-1n, = & FV(n)
Ix:AFn:FunA(A\zB) weakening
I''z:Abtnx:B FUN-E, HYP
Nz:Arw=nz:B ind. hyp.
Nz:Art=nx:B transitivity (EQ-TRANS)
I'F Azt =Az.nz: Fun A(\zB) EQ-FUN-I
T'FXXxt=n:C EQ-TRANS
O

It follows that also type checking is correct, if started in a correct context and with a well-formed
type.

Theorem 4.1. (Soundness of bidirectional type checking)
1. fD:T Ft| Aandl' - okthenI' -¢: AandA € Ty U {Type}.

2.06D:T FtfyCandl - C :Type, thenl’ -¢: C.

Proof:
Simultaneously by induction op. O

5. Models

To show completeness of algorithmic equality, we leave the syntactic discipline. Although a syntactical
proof should be possible along the lines of Goguen [9, 10], we prefer a model construction since it is
more apt to extensions of the type theory.

The contribution of this section is thahy PER model over a-model with full 5-equality is a model
of MLFx. Only in the next section will we decide on a particular model which enables the completeness
proof.
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5.1. )\ Models
We assume a sé&t with the four operations
.. € DxD—-—D application
L € D—D left projection
R € D—-D right projection, and

- € ExpxEnv—D denotation

Herein, we use the following entities:

c € Const := {Set,El Fun,Pair}  constants
w,v, f,V,F..- € D D Const domain of the model
P, 0 € Env = Var—D environments

Let p range over the projection functiohsandR. To simplify the notation, we write alsp v for f - v.
Update of environment by the bindingrz = v is written p, x =v. The operationg - v, v p andtp must
satisfy the following laws:

DEN-CONST cp = ¢ if ¢ € Const

DEN-VAR zp = p(x)

DEN-FUN-E (rs)p = rp(sp)

DEN-PAIR-E  (rp)p = rpp

DEN-(3 tp = t'p if t =gt

DEN-IRR tp = tp if p(z) = p/(z) forall x € FV(t)

This notion of model, which does not admit wegk#&nd strong extensionality rules, but still has the sub-
stitution property (see Lemma 5.1), is an invention of Bealten, Brown, and Kohlhase [5, Def. 3.18].
They consider it in the context of typedcalculus as a basis for a model of higher-order logics. We have
adapted it to the untyped setting, extended it by projections and added injectivity for the type construc-
tors.

The following laws forg are admissible:

DEN-FUN-3 (Axt)pv = t(p,x=v)
DEN-PAIR-(-L  (r,s)pL = rp
DEN-PAIR-(B-R (1,s)pR = sp
Proof:
We show soundness DEN-FUN-/3.
(Axt)pv
= (\zt)pz(p,x=v) DEN-VAR
= (Axt)(p,z=v) x(p, z=0) DEN-IRR
= ((Axt)z)(p,z=0) DEN-FUN-E

(
= tpa=v) DEN-S.



1018 A. Abel and T. Coquand/ Algorithmic Equality with Surjective Pairing

O
The subsitution property is a consequencg-aquality:
Lemma 5.1. (Soundness of substitution)
(t[s/z])p = t(p, z=sp).
Proof:
(t[s/2])p = (Aat) s)p = (Axt)p sp = t(p,x=s5p). O

Remark 5.1. (Comparison to standard\-model)
Barendregt et. al. [4] axiomatize 'amodel byDEN-VAR, DEN-FUN-E, DEN-FUN-{, and weak exten-
sionality:

DEN-FUN-§  (A\zt)p = (A2t if t(p,x=v) =t (p',2’=v) forallv € D.

Then irrelevanceEN-1RR) and substitution (Lemma 5.1) are provable by inductiont,cendDEN-(
follows. However, in Benziiller, Brown, and Kohlhase’s notion of-model, weak extensionality is

not admissible: Considdd to be closed\-terms over the empty set of constants modgieequality,
where denotationp is interpreted as parallel substitution. This clearly modesi-vAR, DEN-FUN-E,
DEN-(, andDEN-IRR, hence, is a model in the sense of Befiflar, Brown, and Kohlhase. But Plotkin

[18] showed that thes-rule does not hold im\Gn-calculus, i.e., there are (closed) terms such that

for all closed termg it holds thatrt =g, st, but notr =g, s. It follows for a fresh variable: that
(rz)(p,x=t) = (sx)(p,x=t) forall t € D, but not(A\z.rx)p = (Az.sz)p, hencef fails. Thus,
Benzmilller, Brown, and Kohlhase’s notion of a model is strictly weaker than the standard one, even in
the untyped setting. For typed models, this has already been demonstrated [5, Example 5.8], but the
counterexample provided does not carry over to untyped models.

Injectivity laws. We require the type constructors in the model to be injective. This is necessary since
we want to interpret distinguished elementsyfthetypes as semantical types later. In the following,
lete, ¢ € {Fun, Pair}.

DEN-SETNOT-EL Set # Elv

DEN-SET-NOT-DEP Set # cV F

DEN-EL-NOT-DEP Elv # ¢V F

DEN-EL-INJ Elv = ElIv impliesv = v/

DEN-DEP-INJ cVF = dV'F impliesc=c¢andV =V'andF = F’

5.2. PER Models

In the definition of PER models, we follow a paper of the second author with Pollack and Takeyama [8]
and Vaux [21]. The only difference is, since we have codes for typBs we can define the semantical
property ofbeing a typealirectly on elements dD, whereas the cited works introduceiatensional type
equalityon closuregp.
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Relations onD. Let Rel denote the set of relations over If A € Rel, we sayv € A if v is in the
carrier of A, i.e.,(v,w) € A or (w,v) € A for somew € D.

Partial equivalence relation (PER). A PER is a symmetric and transitive relation. [Rdr C Rel
denote the set of PERs over If A € Per, we writev = v’ € Aif (v,0') € A. ForAaPERw € A
meansy = v € A. Each setd C D can be understood as the discrete PER whetev’ € A holds iff
v=1"andv € A.

Equivalence classes and families.If v € A, thenty := {/ € D | v = v/ € A} denotes the
equivalence class af in .A. We write D/ A for the set of all equivalence classesAn Let Fam(A) =
D/A — Per. If F € Fam(A) andv € A, we useF(v) as a shorthand faF (v 4).

Constructions on PERs. Let.A € Rel andF € A — Rel . We defineFun(A, F), Pair(A, F) € Rel:

(f, ) € Fun(A,F) iff  (fo, f/o) e F(v)forall (v,0') e A
(v,0") € Pair(A,F) iff  (vL, v'L) e Aand(vR, v'R) € F(vl)

Lemma 5.2. (Fun and Pair operate on PERS)
If A € PerandF € Fam(A) thenFun(A,F), Pair(A,F) € Per.

In the following, assume som&:t € Per and somel € Fam(Set).

Semantical types. We define inductively a new relatidhype € Per and a new functiof.] € Fam(Zype):

Set = Set € Type and[Set] is Set.

Elv =Elv' € Type if v =10" € Set. Then[El v] is E((v).

FunV F=Fun V' F' € Typeif V. =V’ € Type andv =o' € [V] impliesF v = F' v' € Type.
We define thefiFun V' F] to be Fun([V],v — [F v]).

Pair V.F = Pair V! F' € Type if V =V’ € Type andv = ' € [V]impliesF v = F' v’ € Type.
We define therPair V' F| to bePair([V],v — [F v]).

This definition is possible by the injectivity laws. Notice that in the last two clauses, we have
Fun([V],v — [Fv]) = Fun([V'],v — [F' v]),and
Pair([V],v — [F v]) = Pair([V'],v — [F' v]).

Remark 5.2. Type and[_] are an instance of an inductive-recursive definition. A formulation alternative
via a relation which is not a priori a PER, and a partial function, is given in Appendix C.

5.3. Validity

If T is a context, we define a corresponding PEREan, written [I']. We definep = p’ € [I'] to mean
that, for allz: A in T, we havedp = Ap’ € Type andp(z) = p'(z) € [Ap].
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Semantical contexts € Czt are defined inductively by the following rules:

Theorem 5.1. (Soundness of the rules dflLFy,)
1.

2
3
4,
5

SEM-CXT-EMPTY

SEM-CXT-EXT

o€ Cxt

I e Cat Ap = Ap' € Type forall p = p' € [I]

If D:: T I ok thenI’ € Cxt.

(T,x:A) € Cat

. DT F A:Typethenl € Cst, and ifp = p' € [['] thenAp = Ap’' € Type.

.MfD T Ft: Athenl € Cet, and ifp = p' € [T'] thenAp = Ap’ € Type andtp = tp’' € [Ap.

fD::T A=A :Typethenl € Czt,andifp = p’ € [['| thendp = A'p' € Type.

tp=1t'p € [Ap)].

Proof:
Simultaneously by induction oP, using lemma 5.1.

e Case:

MDD T Ft=+¢: Athenl € Cat,and ifp = p/ € [I'] thenAp = Ap’ € Type and

'z:A+-t:B

FUN-I

I' Azt : Fun A (\zB)

(T,x:A) € Cat
I'e Cat

p=rp €[l

Ap = Ap' € Type

v="1" € [Ap]

(p,x=v) = (p,x=0") € [[,2: A]
B(p,x=v) = B(p/,z=1") € Type
(AxB)pv = (A\xB)p' v € Type

(Fun AXxB)p = (Fun A\zB)p' € Type

s/, 2=1/) € [B(pya=v)
pv = (Axt)p' v € [A\zB)pv]
p= (Azt)p’ € [(Fun AXzB)p]

~

>
8
|
<

~—
I

e Case:

FUN-E

ind. hyp. (*)
inversion

assumption
from (*)
assumption«, v’ arbitrary)
def. [I', z: A]
ind. hyp.
DEN-FUN-3
def. Type, DEN-FUN-E, DEN-CONST

ind. hyp.
DEN-FUN-3
def. Fun, DEN-FUN-E, DEN-CONST

I' Fr:FunA(AxB) F'kFs: A

I'-rs: Bls/x]
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I' e Cat ind. hyp.
Fun (Ap) ((M\z.B)p) = Fun (Ap') ((M\z.B)p’) € Type ind. hyp.
sp=sp € [Ap] ind. hyp.
B(p,x=sp) = B(p',x=sp") € Type def. Type
(B[s/z])p = (B[s/z])p’ € Type subst. (Lemma 5.1)
rp=rp € Fun([Ap],v — [B(p,z=0)]) ind. hyp.
rp(sp) =rp' (sp') € [B(p,x=s5p)] def. Fun
(rs)p = (rs)p e [(B[s/z])p] DEN-FUN-E, Lemma 5.1
e Case:
I'z:A+t:B I'kFs: A
EQ-FUN-(3

I' b (\xt) s = t[s/x] : B[s/x]

I'eCrt ind. hyp.
p=rp €l assumption
Ap = Ap' € Type ind. hyp.
sp=sp € [Ap] ind. hyp.
(p,x=sp) = (p,x=sp") € [[,2: A] def. [, z: A]
t(p,a;:sp) :t<p,7x:‘9p,) S [B(,O,.’I?:Sp)] ind. hyp
(Azt)p (sp) = (t[s/z])p’ € [(B[s/z])p] DEN-FUN-(3, Subst.
B(p,x=sp) = B(p',x=sp") € Type ind. hyp.
(B[s/z])p = (B[s/z])p’ € Type subst. (Lemma 5.1)
o Case:

I' t:Fun A(A\xB)
' - (Ax.tx) =t:Fun A(\zB)

EQ-FUN-7 x & FV(t)
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I' e Cxt ind. hyp.
p=p €[l assumption
(Fun AXzB)p = (Fun AXzB)p’ € Type ind. hyp.
Ap = Ap' € Type inversion onZype
v=1"€ [Ap] assumption«, v’ arbitrary)
tp =tp' € [(Fun AXzB)p] ind. hyp.
tpv =tp v € [(AzB)p v def. Fun
t(p,z=v)v =tp v € [(M\zB)pv] irrelevanceDEN-IRR
(tz)(p,z=v) =t v € [(AxB)p ] DEN-FUN-E, DEN-VAR
(Az.tx)pv =t v € [(AxB)p] DEN-FUN-(3
(Az.tx)p =tp € [(Fun AXxB)p] sincewv, v’ arb.
e Case:

I' Fr: Pair A(A\zB)
(rL, rR) =r: Pair A(\xzB)

EQ-PAIR-1) -

I' e Cxt ind. hyp.
p=rp €l assumption
(Pair AXzB)p = (Pair AXzB)p’ € Type ind. hyp.
rp=rp € [(Pair A\zB)p] ind. hyp.
(rL)p=rp L e [Ap] def. Pair, DEN-PAIR-E
(rL, rR)pL =1rp' L € [(Pair AXzB)p] DEN-PAIR-[3-L
(rR)p=rp Re[(AzB)p (rL)p def. Pair, DEN-PAIR-E
(rL, rR)pR=rp' R€ [(AzB)p ((rL, rR)pL)] DEN-PAIR-3-R
(rL, rR)p =rp’ € [(Pair A xB)p] def. Pair
O

5.4. Safe Types

We define an abstract notion séfety similar to what Vaux calls “saturation” [21]. A PER is safe if it
lies between a PER/ on neutral expressions and a PERon safeexpressions [22]. In the following,
we use set notatiof andu also for PERs.
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Safety. N, Spun, Spair € Per form asafety rangef the following conditions are met:

SAFE-INT N C S = Spun USpair

SAFE-NE-FUN uv=uveN fu=vecNandv=v €S8
SAFE-NE-PAIR up=upeN fu=deN

SAFE-EXT-FUN v="1"€ Spy fvu=vv eSforallu=v eN

SAFE-EXT-PAIR v="1"€ Spuir fvL=vLeSandvR=vReS
Arelation A € Per is calledsafew. r.t. to a safety rangeN’, Sfun, Spair) if N C A C S.

Lemma 5.3. (Fun and Pair preserve safety)
If A € Peris safe andF € Fam(A) is such thatF(v) is safe for allv € A then Fun(A, F) and
Pair(A, F) are safe.

Proof:
By monotonicity of Fun andPair, if one considers the following reformulation of the conditions:

SAFE-NE-FUN N C Fun(S, _— N)
SAFE-NE-PAIR N C Pair(N, - +— N)
SAFE-EXT-FUN Fun(N, -— 8) C Spn
SAFE-EXT-PAIR  Pair(S, - — S) C Spair

0
Lemma 5.4. (Type interpretations are safe)
Let Set be safe and/(v) be safe for alb € Set. If V' € Type then[V] is safe.
Proof:
By induction on the proof that” € Type, using Lemma 5.3. O
6. Term Model

In this section, we instantiate the model of the previous section to the set of expressions produlo
equality. Application is interpreted as expression application and the projections of the model are mapped
to projections for expressions. Let D denote the equivalence classrof Exp with regard to=g.

D = Exp/=p3
TS = TSs
FL = rL
¥R := rR
tp = m

Herein,t[p] denotes the substitution ofz) for « in ¢, carried out in parallel for alt € FV(¢). In the
following, we abbreviate the equivalence cladsy its representative, if clear from the context.
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Lemma 6.1. Exp/ =g is a\ model in the sense of the last section.

Proof:

We have to show that all operations are well-defined. For application, consider pairs of equivalent mem-
bersr =g r’ ands =3 s'. Sincer s =g r’ s, application is well-defined. The projections are similarly
easy. For the denotation operation,fletterm with 'V (t) = . We assume two equivalent valuatigns
andp’, meaning thap(z) =g p'(z) for all variablesr. Now 2

tlo] =g (M) D)[p] =5 (AZt)[p] Z[p] =5 (ATt) Z[p]
=g (B[] Z[p] =5 (AT)[p] T[] =5 ((AZH)D)[p'] =5 t[o].

If we weaken the assumption such theand o’ have to equivalent only on the free variables ofthe
calculation is still sound and validate€EN-IRR. The lawSDEN-CONST, DEN-VAR, DEN-FUN-E and
DEN-PAIR-E follow directly by the definition of parallel substitution, with a little work alsan-g. The
injectivity requirements hold sindg&l, Fun, andPair are unanimated constants.

O

Value classes. The -normal formsv € Val, which can be described by the following grammar, com-
pletely represent th@-equivalence classésc Exp/=g of 5-normalizing terms.

VNe > w == c|z|uv|up neutral values
VFun > vy == u|Aaw function values
VPair 3 v, == u|(v,0) pair values

Val 2 v = vf|y values

n-reduction on g-normal forms. In order to obtain am-equality on values, we define one-step
reductionv —, v’ for v, v’ € Val inductively by the following rules.

ETA-FUN-RED —— ETA-PAIR-RED
AT UT —p U (ul, uR) —, u

/
’U—>77U

ETA-FUN-| —m
ATV —5 Azv’

u—p v —p
ETA-FUN-E-L —————— ETA-FUN-E-R ————
UV —y u'v UV —y uv
vl —p V] U —y U
ETA-PAIR-I-L ; ETA-PAIR-E —
(v1, v2) —y (v1, V2) up —y u'p

Note thatn-reduction ong-normal forms does not createredexes, hence it is well-defined. Neutral
values reduce to neutral values, so it is even well-define¥da It doesnot preserve typing, e.g.,

2Benznilller, Brown, and Kohlhase [5] prove a similar result by convertifigto an.S K -combinatorical term. Our argument
seems simpler.
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z:PairAB F (zL, zR) : PairA(A\..B(zL)), but notz : Pair AB + z : PairA(A_.B(zL)). In
contrast taj-reduction on arbitrary terms, it is locally confluent. let>} denote the reflexive-transitive
closure of—,. As usualn-equalityv =, v’ holds iff v — V0 e v’ for somewvy. Note that all
ETA-rules above are admissible for both-} and=,,.

Lemma 6.2. (Local confluence)
If D1 :: vg —, v1 ANdDy :: vg —,, v thenvy —* v3 andvy —* v3 for someuws.
n n n n

Proof:
By simultaneous induction g®; andD,. Some cases:

e Casev; = v9. Then?}3 = V1 —>;; V3.

o CaseD; :: \z.ux —y uandD; :: A\z.ux —, Az. v’ x whereuw —, v/. Thenhz. v’z —,

o',

e CaseD; :: (ul, uR) —, vwandD; :: (ul, uR) —, (v'L, uR) whereu —, «'. Then
u —y u'and(u' L, uR) —, (v'L, v'R) — o',

e CaseD; :: uv —, vv withu —, v andDy :: vv —, uv’ with v —,, v’. Then
v —y v/ v andu v —, W'

e CaseD; :: Axvg —y Azvy With vg —; vy andDy 2 Azvg — Azve With vg —, v2. By
induction hypothesis; —, v3 andvy —,, v3, hence A\zvy —,, Azvsz andAzvy —, Azvs.
|

Corollary 6.1. (Confluence)
If vo —7 v1 anduvyg — 2 thenwv, — U3 andvy —, v3 for somevs.

Proof:

By Newman's lemma, it is sufficient to show that-} is strongly normalizing. This is easy to see: Each

reduction step decreases the number of introductidss(d pairs), and no step creates an introduction.
O

Lemma 6.3. (Inversion properties of—7)
1. fD iz —5 vo thenvg = z. If D :: ¢ —7 v thenyy = c.
.M D uv — vy thenvy = u' v with u — v’ andv — V.

2
3. fD:up — vo thenvy = ' p with u — o',
4

D Azv —— V0 then either

*
n ux,or

e vo = Arv’ andv —; .

e vy = u neutral andb —

5. If D (v1,v2) — vo then either

e vp = u neutral and botl; —7 uL andvy —; uR, or
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e vy = (v, vy) and bothvy —7 v andvy — vs.

Proof:
Each by induction orD. O

Corollary 6.2. (Inversion on =,)
1. If x =, ug thenug = z. If ¢ =, up thenuy = c.

. Mfuv =, ug thenuy = v’ v’ with uw =, v/ andv =, v'.
M up =, up thenug = o' p with u =, /.

.M dzv =, uthenv =, ux.

. M (v1,v2) =, uthenvy =, vl andvy =, uR.

2
3
4
5. If A\zv =, Azv’ thenv =, v'.
6
7. If (v1,v2) =, (v],v5) thenvy =, v} andvy =, v},
8

N (v1,v2) =, Azv thenw, —ul, vy —7 uR, anduz ;«— v for someu.

An n-equality on 3-equivalence classes. Since— is confluenty-equalityv; =, vq, which holds
iff vy —>:; v ;;<— v for someuw, is transitive and, hence, an equivalence relatio’Vein Thus, the
relation

t~t < t=gvandt =g for somev,v’ with v =, v/

is a partial equivalence dixp. Note that ift ~ ¢/, thent and?’ ares-normalizable. If, t" are3-normal
forms, thent ~ ¢’ if t =, ¢/. We lift ~~ to S-equivalence classes:~ t' iff ¢ ~ ¢. Two classes are only
related if both contain g-normal form. Choosing these normal forms as representatives, we have

T~v = v = v,
Safety range. We define the following sub-relation, Sy, , Spair € S 1= .

(@, v') e N = u=pu
(Vf, V%) € Sfun = vf =y 0}
(Up, v)) € Spair = Vp =q V),

Lemma 6.4. N, Sy, Spair € Per.

Lemma 6.5. (Extensionality for functions)
If vo ~v' zwithz & FV(v,v'), thenv, v’ € VFun andv =, v'.

Proof:
Consider the cases:

e Casev, v’ neutral. Then z =, v’ z, andv =, v’ follows by Cor. 6.2, item 2.
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e Casev = A\zvg andv’ = w neutral. W.l.0.9.x ¢ FV(u). By assumptiorv z ~ vz, and since
(Azvg)  — g vo, We havevg =, ux. Hence \xvy =, A\z. ux =, u.

e Casev = Azwvg andv’ = Azv). From the assumption we gef =, v; by S-reduction. Hence,
Azvy =y Az},

e Casev = (v1, v2). Then(v;, v2) x does not reduce t6-normal form, which is a contradiction to
the assumption.
0

Corollary 6.3. (SAFE-EXT-FUN) B
If tu=vu e Sforallu=u €N, thent = v € Spyp,.

Proof:
By the previous lemma with = v’ =« & FV (v, /). O

Lemma 6.6. GAFE-EXT-PAIR)
If vL ~¢'LandvR ~ ¢'Rthenv,v' € VPair andv =, v'.

Proof:
By cases, similar to last lemma. O

Corollary 6.4. (Safety range)
N, Sfun Spair fOorm a safety range.

Proof:

SAFE-INT holds by definition ofN, Sy, Spair. RequirementSAFE-NE-FUN and SAFE-NE-PAIR are
simple closure properties gfequality. SAFE-EXT-FUN is satisfied by Cor. 6.3 anglAFE-EXT-PAIR by
Lemma 6.6. O

Now we can instantiate our generic PER modeMifFy,. We letSet := S and&/(t) := S. From
this we get a decision procedure for judgemental equality.

Lemma 6.7. (Context satisfiable)
Let po(z) := T forall x € Var. If I" I~ ok, thenp, € [I'].

Corollary 6.5. (Equal terms are related)
fT Ft=1¢t:C #Typethent ~ 7.

Proof:
By soundness oMLFy, (Thm. 5.1),tpy = t'pg € [Cpo]. The claim follows sincdCpg] C S by
Lemma 5.4. O

We have shown that each well-typed termpisiormalizable and two judgementally equal terps
reduce to the same normal form. This gives us a decision procedure for equality of well-typed terms.

It remains to show that our algorithmic equality is also a decision procedure. In the next section, we
demonstrate thdt~ ¢ impliest| ~ t'|, which means that bothand¢’ weak head normalize and these
normal forms are algorithmically equal. Then we have proven completeness of the algorithmic equality.
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7. Completeness

In this section, we show completeness of the algorithmic presentatidihbf; by relating it to the term
model of the last section.

7.1. A Transitive Extension of Algorithmic Equality

To relate they-equality ong-normalforms= to the algorithmic equality-, we first present a transitive
extension® of the algorithmic equality which is conservative for terms of the same type. We then show

that this extensiod- is equivalent ta~. Since~ has been shown complete through the PER model, the
algorithmic equality is also complete for terms of the same type.

Algorithmic equality, restated. We recapitulate the rules of algorithmic equality, this time without
use of active eliminatior.
Rules for neutral terms:

AQ-C

AQ-VAR
cCr~ C xr~xT

n~n' sl ~s'] n~n'
AQ-NE-FUN AQ-NE-PAIR ———
ns~mn's np~n'p

The following three rules are a synonym #p-EXT-FUN.

AQ-EXT-FUN-FUN H~tl
Q Axt ~ \xt!
AQ-EXT-FUN-NE tl~nz ¢ FV(n) AQ-EXT-NE FUwatl ¢ FV(n)
“EXT-FUN-NE —/——— %~ o n -EXT-NE- — 7 n
Q Axt ~n Q n ~ Axt

And these three rules are a synonymAQ-EXT-PAIR.

rl ~71'| s] ~ s

(rys) ~ (r,8)

AQ-EXT-PAIR-PAIR

rl ~nlL sl ~nR nL~r| nR~s|
AQ-EXT-NE-PAIR
(r,s) ~n n e~ (r,s)

AQ-EXT-PAIR-NE

A transitive extension. Letw ~ w' be given by the rules for algorithmic equality plus the following
two:

+ + +
AQT-FUN-PAIR tl~nz  n - rl n sl x & FV(n)
Azt ~ (r,s)
+ + +
AQT-PAIR-FUN riznl  sionR ne~vl] z & FV(n)

(r,s) L At
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These rules destroy the algorithmic character, since the neutrahtbas to be guessed if one reads the
rules from bottom to top as in logic programming.

Lemma 7.1. (The extensiont is conservative for same-typed terms)
1. D :ninandl n:Candl -2 : C' thenn ~ n'.

2. f Dt L ¢ andT k¢, ¢ : Cthent| ~ t'].

Proof:

Simultaneously by induction oP using subject reduction for weak head evaluation which is implied by
its soundness (Lemma 4.1). The requirement of being of the same type in (2.) p@vents applying
rulesAQ"-FUN-PAIR andAQ™-PAIR-FUN. HenceD contains only the counterparts of the rules for the
algorithmic equality. O

As a consequence, the algorithmic equality is transitive for terms of the same type, pr@vi@'edjeed
transitive. This claim will be validated through equivalence with the transitive

7.2. Soundness of the Extended Algorithmic Equality

In this section, we show that the extended algorithmic equéiliﬁ;s sound w.r.t. the model equality
~. Together with the dual result of the next section we establish equivalence of these two notions of

equality. As a byproduct, we obtain transitivity 8f, which we will later also obtain directly (see
Section 8). However, for the completeness of the algorithmic equality, which is the main theme of this
article, the soundness result of this section is not relevant.

Lemma 7.2. (Standardization)
1. Ift =g xthent \, z. If t =5 cthent \ c.

2. Ift =g nsthent \,n' s’ withn =5 n’ ands =3 ¢'.
3. Ift =g npthent \, n'pwithn =5 n'.
4. If t =g Azr thent \, Azr’ with r =g 1.

5. Ift =5 (r,s) thent \, (', s") with r =g r’ ands =g 5.

Proof:
Fact about the-calculus [3]. O

Lemma 7.3. (Soundness of w.r.t. ~)
If D::t] L ¢ thent ~ ¢

Proof:
By induction onD, using standardization. All cases are easy, for example:
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e Case

+ +
n~n S|l ~S
AQT-NE-FUN ! !

nsn's
By induction hypothesis and standardizatien=3 v =, v’ =3 n’ ands =g v =, v/ =3 ¢
Thus,ns =g uv =, u'v' =g n's.

e Case
t] Lna
et T

By induction hypothesis and standardizations3 v =, ur =g nx, hence \zt =g Azv =,
AT ux =, u =g n.

AQT-EXT-FUN-NE x & FV(n)

e Case

tlrtnx nLirl nRLs
Aat (r,s)

By induction hypothesis and standardizatiorsg v =, uxz =g nx, hence\zv =, Az.ux =,

u. Further,nl =g ulL =, vi =g randnR =g uR =, v2 =, s, thus,u =, (uL, uR) =,

(vi,v2). Togetherhxt =g Azv =, (v1,v2) =3 (1, 5).

| x & FV(n)

AQT-FUN-PAIR

O

Corollary 7.1. If ¢| x t| thent is g-normalizable.

Remark 7.1. A consequence of the lemma is thatt o implies v =, v’. This can also be proven
directly without the use of standardization.

7.3. Completeness of the Extended Algorithmic Equality

Lemma 7.4. (Completeness of on B-normal forms)
If v =, o' thenv Lo

For the proof we need an induction measjurgon terms which is compatible with the subterm ordering
and gives extra weight to introductions, such tpatr| + [t| > |r| + |tz| and|(r, s)| + [t| > |r| +

|t L|. These conditions are also met by Goguen’s [10] measure for proving termination of Coquand’s [6]
algorithmic equality restricted to pureterms. But we need the extra conditidns:¢| > 2|¢| and both
|(r,s)] > 2|r| and|(r, s)| > 2|s|.

|| = Jc:=1
rs| = r| + ]
ol = Il
Axt| = 2lt|+1
|(rys)| = 2fr] + 2]s]

Observe that the conditions are met singe> 1 for all terms¢. This measure is compatible with
n-reduction, i.e., it —, v’ then|v| > [/|.
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Proof:
[of Lemma 7.4] By induction orw| + [v/|. We first treat the cases for neutral terms-, v’

e Caseu = c. Thenu/ = c by Cor. 6.2 and: < c.
e Caseu = z. Similar.

e Caseu = ujv;. Then by Cor. 6.2/ = ugvp With u; =, ug andv; =, vo. By induction
hypothesisu; < ug andvy L v9, henceu L by AQT-NE-FUN.

e Caseu = uj p. Similar.
Now we look at the general form=,, v', where we omit symmetrical cases.

e Caselrv =, u. By Cor. 6.2,v =, ux. Sincejv| + |uz| = [v| + Ju| +1 < 2lv| + 1) + |u| =
|Azv| + |ul, we can apply the induction hypothesis and obt@iRe ux. Thusizv < u by
AQT-EXT-FUN-NE.

e Caselzv =, Azv'. By Cor. 6.2,v =, ¢/, on which we apply the induction hypothesis and
AQT-EXT-FUN-FUN.

e Case\zv = (v1,v2). By Cor. 6.2 there exists a neutrabuch that — v x and bothu L }«—
vy andu R 7« vy. Since reduction is compatible with the measure, we have |u x| < 2|v| <

2|v] + 1 = |Azv| and can apply the induction hypothesis to obtaid- wz. Further, we have
lul| + Jv1] < 21| < 2Jvr 4 v2| = |(v1,v2)], thus, by induction hypothesis,L ~ vy, and
similarly, u R £ vy. By AQ*-FUN-PAIR we gethzv + (v1,v2).

e Case(v,v2) =, u. By Cor. 6.2,v; =, uL andvy =, uR. Since|vi| + |uL| = |vi| + |u] +1 <
2(|v1| + |va]) + |u| = |(vi,v2)| + |ul, by induction hypothesisy; < wL, and with a similar
calculationps © uR. Thus,(vy,v2) ~ u by AQT-NE-PAIR.

o Case(vy,v2) =, (v],v}). By inversion, induction hypothesis, and rul@*-EXT-PAIR-PAIR.
0

Remark 7.2. (Alternative proof)
First, show reflexivityv < v for all B-normal formsv by induction onv. Then prove that is closed
undern-expansion. Maore precisely, show that

1. u —, v andD : o/ &L vimply ué L v for a vector of eliminations, and
2. v —y v2 andD :: vy L vg imply vy L V3

simultaneously by induction of?. For reasons of symmetr&t, is also closed by;-expansion on the
right hand side. Finally, assuming —>j‘7 vy ;< vz We can show; L vz from vy < vo by induction
on the number of reduction steps.

Lemma 7.5. (From normal to normalizing terms)
1. Ifn=guandn =g andD :: u L/, thenn < /.
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2. Ift =g vandt =5 v’ andD :: v L o/, thent| L ¢/].

Proof:
Simultaneously by induction oP, using standardization.

e Casen =g uv andn’ =g v’ v and

t t .
+ u ~ v~
AQT-NE-FUN
wv o u
n "\, no s With ng =g u ands =g v standardization
n' \, ngy s’ with njy =g v’ ands’ =5 ' standardization
ng ~ nl first ind. hyp.
sl L] second ind. hyp.
no S in{) s AQT-NE-FUN
n=mngpsandn =ngs n ™\, nforn € WNe

+
n~n

e Casel =g Azv andt’ =3 u and

+
AQt-EXT-FUN-NE —— 2% 4 Z FV(u)

ALV ~ U
t N\ Azr withr =g v standardization
t' N\ nwithn =5 u standardization
x & FV(n) renaming
nT =gur =g Is a congruence
rina induction hypothesis
\er Sn AQT-EXT-FUN-NE
e Casel =g Azv andt’ =3 (v, v2) and
v A ur uLivl uthvg
AQT-FUN-PAIR — x & FV(u)
Azv ~ (v1,v2)
t ™\ Azr withr =g v standardization
'\, (r1,72) with 71 =g vy andry =g vy standardization
r L uzandul £ r1 andu R L 79 induction hypotheses

et (1, ) AQT-FUN-PAIR
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Corollary 7.2. [Completeness of] If ¢ ~ ¢ thent| < ¢/].

Proof:
By assumptiont =g v =, v’ =3 t'. Firstv < o' by Lemma 7.4, then alsg <~ #'| by Lemma 7.5. O

Corollary 7.3. If tis g-normalizable, themn| y tl.

Together with Cor. 7.1 we see that the diagonal of extended algorithmic equalty—which coincides
with the diagonal of pure algorithmic equality—characterizes the weakly normalizing tefitherefore,

we can definev € WN <= w <~ w andt € WN <= ¢ N\, w € WN. Let us specialize the rules of
algorithmic equality ta/VN:

n € WN s € WN n € WN

ce WN x € WN ns € WN np € WN
r € WN r € WN s € WN N\ w w € WN
Azr € WN (r,s) € WN t € WN

This predicate corresponds Joachimski and Matthes’ [14] inductive characterization of weakly normal-
izing A-terms. (Only that they use weak head reduction instead of weak head evaluation.)

7.4. Completeness of Algorithmic Equality

Now we can assemble the pieces of the jigsaw puzzle.

Theorem 7.1. (Completeness of algorithmic equality)
1. fT Ft=1t:C #Typethent| ~t'].

2. fD:T A=A :Typethend ~ A'.

Proof:

Completeness for terms (1): By Cor. 6.5 we have 7, which entailst] < | by Cor. 7.2. Since

' - ¢t : C,weinfert] ~ t'| by Lemma 7.1. The completeness for types (2) is then shown by
induction onD, using completeness for terms in ca&se SET-E. O

8. A Shortcut: Disposing ofn-Reduction

In sections 7.2 and 7.3 we have shown that the extended algorithmic eqﬁa’ﬁi)equivalent ton-
equality ong-normal forms. Hence, we could define more direetly v’ iff v L v, The requirement
SAFE-EXT-FUN is simply fulfilled by ruleAQ™-EXT-FUN, and SAFE-EXT-PAIR by AQT-EXT-PAIR. It
remains to show—uwithout reference tq—thati is transitive. We dedicate the remainder of this
section to that task.
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Let#D > 1 denote the following measure on derivatidds: w L'

#AQT-FUN-PAIR(D1, D21, Da2) = 1+ #D1 + max(#Da1, #D22)
#AQT-PAIR-FUN(D11, D12, D) = 1+ max(#Di1,#D12) + #Do
#r(Dy,...,Dy) = l+max{#D;|1<i<n}

Here,r stands for any other rule application, or more precisely, a rule which has a counterpart in the
original algorithmic equality judgement ~ w’. Hence,#D is just the height of derivatio® if D
corresponds to a derivation af ~ w’. Since ruleAQ™-FUN-PAIR stands for a pair of derivations

D; :: Azt ~ nandDy :: n ~ (r, s), its weight is derived for the sum of the weight of these derivations;
and similarly foraQ™-PAIR-FUN.

Lemma 8.1. (t is transitive)
Let ¢'be a possibly empty list of eliminations.

1. f Dy :n X wandDy :: w L n/ then€ ::n L /.

2. Dy w L neandDy i n L n/theng = w L n'e

3. fDy n L andDs :: n' €& wthens ::n L w.

4. If Dy - wy < wy andDy 1 wo < ws then€ :: wyq L w3.
In all cases#E& < #Dy + #Ds.

Proof:
Simultaneously by induction o#D; + #Ds. In the remainder of this proof, leayg implicit. First, we
prove (1):

e CaseD, Dy s g ThenE::xixwith1:5<D1+D2:2.

e Case
DH Dlz D21 D22
ny < ng s1 L 5ol ng X ny sal C s3]
D = Dy =
+ +
ni 81 ~ Ny S2 Nng S9 ~ N3 S3
& ing o & < Di1 + Dy first ind. hyp.
& sl L s3] Ey < Dig + Doy second ind. hyp.
E:ng sliingsgl E=E+E+1<D+Ds AQT-NE-FUN

e Casenyp Y ng p andng p x ng p: Similarly.
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e Case
Di Dy
nx Lt tlinx .
Di= ———a¢FV(n) Dy= ———— agFV()
n~ A\xt Axt ~n'
Eunxina & <Dy + D, ind. hyp.
Eunin E< & <Dy +Dy inversion
e Case
Dn Dis Doy Doy
nLLr| nRL 5| rl /L sl L n/R
n~ (r,s) (r,s) ~n
& unlin/L & < D11+ Dxn ind. hyp.
Euntn E<& <Dy +Dy inversion

For (2), consider the cases:
e Casew is neutral and’is empty: By (1).

e Casew = ng sg and

Du D1
+ o + Dy
ng ~ne sol ~ sl ¥
D = T n~mn
ng so ~ nes
g ingLn'e g <Dy + Dy ind. hyp. (D11 + Da < Dy + Ds)
E ::ng sy Lnes =1+ max (&', D12) < Dy + Do AQT-NE-FUN

e Casew = ngp similar.

e Casew = Azt and

/
Dy
+ 5 D,
tl ~nex ¥,
D = n~mn
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gt Lnlex g <D, +D, ind. hyp.
ExdetLné E<D|+Dy+1=D1+Dy AQT-EXT-FUN-NE
e Case
D1y D12
Do
rl Lnel sl L neRr N
D = n~n'

& url LneL & < D11+ Dy ind. hyp.
Ey s L' eRr Es < D12+ Dy ind. hyp.
E(rs) Tne E=14+max(&,&) <Dy + Dy AQT-EXT-PAIR-NE

Statement (3) is symmetrical to (2) and can be proven analogously. For (4), all of the following cases are
easy:

e Case\zt < nandn < \zt'.

Case\zt © Azt andzt’ £ n (plus symmtrical case).

Case\zt; © Aty and\xts ~ \rts.

Case(r,s) ~nandn < (1, s).

Case(r, ) Y (r',s") and(r’, s) < n (plus symmtrical case).

° Case(rl,sl) ft (7“2,82) and(T’Q,Sg) "t (7’3,83).

The following cases introduce a relation between a function and a pair.

e Case
D] Do Doo
tlftnzn antrl nthsl
DIZ 7+$€FV(TL) DQZ T
Axt ~n n ~ (r,s)

£t L (r,s) by AQT-FUN-PAIR. £ = 1 + D) + max(Da1, Da2) < Dy + Ds.
e Case(r, s) < nandn £ Azt. Symmetrical.

The remaining cases eliminate a relation between a function or a pair. We only spell out these cases
where the second relation is of this kind, the other cases are analogously.
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e Case{ & FV(n,n'))

D D, D, D,
nxfttl tlftn’:c n’Lftrl n’thsl
Di=——— D= -
n ~ Axt Axt ~ (r,s)
E unz iy & <Dy + D, ind.hyp. onD}, D,
Eyuin L/ 1+ & < D)+ D} inversion on&;
EunlLn/L &3 < D) + D) AQt-NE-PAIR
£ =nRLn/R &, < D)+ D} AQT-NE-PAIR
EsunLir| & < E+ Dy <D+ Dy ind.hyp. on&s, D}
g nR < s| & < E4+ Dy <Dy + Dy ind.hyp. on&y, D),
Euni (r,s) € =1+max(&,&) < D1+ Dy AQT-EXT-NE-PAIR

e Case{ & FV(n,n'))

D} Doy Doa Dos
t] L] v X n e n'LAr| n'RAs|
D= —F— Dy = "
Azt ~ Axt! Axt! ~ (r, s)
gt Ana &' < D)+ Doy ind.hyp. onD}, Dy
£zt L (r,s) E =1+ &' 4 max(Day, Da3) < Dy + Dy AQT-FUN-PAIR
e Case
Dn Do Da3
rl L nL sl A nR nr~t]
D, = m x & FV(n)
(rys) ~ At
Doy Doy Do3
+ /1y + / +
tl ~n'x n'L~r] n'R~s|
D2 = T ¢ FV(TL/)

At & (r,s)
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Eunzine & < Dig+ Dy ind. hyp.
EyunlL /L &y < D13+ Dy inversion
& :nRAWR E3 < D13 + Doy inversion
Epimrl Ll Ey < Dy1+E <Di1 +Dig+ Doy ind. hyp.
& sl Ln/R &5 < Dig + & < Dyg + Di3 + Doy ind. hyp.
Eourl '] Es < E4+ Doy < D11 + D13 + Dot + Do ind. hyp.
I ral E; < E5 + Doy < Dia + D13 + Dot + Do ind. hyp.
£ (rs) L (1) & =14 max(&;, &) < Dy + Dy AQT-EXT-PAIR-PAIR

We have three cases left, which can be proven similarly to the previous ones.
e Casen < (r,s) and(r,s) < \at.
+ o0 1o T
e Case(r,s) ~ (r,s')and(r', s') ~ Axt.

e Case\zt < (r,s) and(r,s) < Axt’.

9. Decidability

By completeness of algorithmic equality, every welltyped term is weakly normalizing (Cor 7.1). On
weakly normalizing terms, the equality algorithm terminates, as we will see in this section.

9.1. Decidability of Equality

We have shown that two judgmentally equal terms$ weak-head normalize t@, w’ and there exists
a derivation ofw ~ w’, hence, the equality algorithm, which searches deterministically for such a
derivation, terminates with success. What remains to show is that the query’| terminates for all
welltypedt, ¢/, either with success, if the derivation can be closed, or with failure, in case the search
arrives at a point where there is no matching rule.

For a derivatiorD of algorithmic equality, we define the measlfd which denotes the number of
rule applications on the longest branchfcounting the rulesQ-EXT-FUN andAQ-EXT-PAIR twice3

Lemma 9.1. (Termination of equality)
If Dy :: wy ~wy andDy :: we ~ wo then the queryw, ~ wo terminates.

Proof:
By induction on|D;| 4 |D2|. There are many cases to consider. First we consider neutrals, for
instance:

3A similar measure is used by Goguen [10] to prove termination of algorithmic equality restricted th-firas [6].
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e Case:w; = x andws = nsg s9. Since there is no rule with a conclusion of the shape ns ss,
the query fails.

e Case:w; = ni s1 andws = ngy so. Rule AQ-NE-FUN matches. By the first induction hypothesis,
ni1 ~ n1 andny ~ ng, hence, the subquery; ~ n, terminates. Since by the second induction
hypothesiss; \, w}, s2 \, wh, w] ~ w}, andwl ~ w, the subquery| ~ w) terminates as
well. Hence, the whole query terminates.

The other neutral cases work similarly. Let us consider some cases where at least one of the weak head
normal forms is not neutral.

e Casew; = \zr andwy = (t,t’). There is no matching rule, the query fails.

e Casew; = n andwy = (t,t'). Rule AQ-EXT-PAIR matches. We apply the induction hypothesis
to the derivationsD; :: nL ~ nlL andD} :: t| ~ t|, which is legal sinceD;| + |Dy| =
|D1|+|Dy| 42 > (|D1] +1) +|Dh| = |D1| +|D4)|. Hence, the first subqueryl ~ t| terminates,
and, by a similar argument, also the second subqu&y ¢'|.

e Casew; = n andws = Axzr. Rule AQ-EXT-FUN matches. Since ~ x is a derivation of height
one, we can apply the induction hypothesis, with justification similar to the last case, on the only
subquerynx ~ r|.
O

Theorem 9.1. (Decidability of equality)
If T +¢,¢ : Cthenthe query| ~ t'| succeeds or fails finitely and decidés- ¢t = t' : C.

Proof:

By Theorem 7.1¢ N\, w, t' \, v/, w ~ w, andw’ ~ w’. By the previous lemma, the quetry ~ v’
terminates. Since by soundness and completeness of the algorithmic equalityy’ if and only if
I' Ht =1+ :C,the query decides judgmental equality. O

9.2. Termination of Type Checking

The termination of the type checker is a consequence of termination of equality for welltyped objects.

Lemma 9.2. (Termination of type checking)
LetT"  ok.

1. The quenyl” ¢ || ? # Type terminates.

2. IfI' + C : Type then the query’ + ¢ C terminates.

Proof:
Simultaneously by induction on The inference succeeds directly in case x with rule INF-VAR, and
fails immediately in caseé = ¢, t = \zr, ort = (t1,t2). We considet = r s. Then ruleINF-FUN-E

matches.
' Fr{ FunA(A\zB) sy A

I'krsl Bls/z]

INF-FUN-E
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queryl’ r |} 7 terminates induction hypothesis
I'kErlC &

C = Fun A (\xB) otherwise fail
I' Fr:FunA(AzB) inference sound (Thm. 4.1)
I' F Fun A (AzB) : Type syntactic validity
I' HA:Type inversion
queryl’ s {1 Aterminates induction hypothesis
I'kEsp A otherwise fail
I'kFs: A checking sound (Thm. 4.1)
I'x:A F B :Type inversion
I' b B[s/z] : Type substitution (Lemma 2.1)

I' +rsl B, query successful

The remaining case= r p is treated analogously. For the termination of checking, let us start with case
t = (t1,t2), where ruleCHK-PAIR-1 matches.

Fl—tlﬂA F"tQﬂB[tl/l’]

CHK-PAIR-I
[ F (t1,t2) ) Pair A(AzB)

Using the induction hypotheses, we basically need to showlthiat Blt;/x] : Type if T' F t; | A
succeeds. The case= Axr matches ruleeHK-FUN-I and is treated similarly. In the remaining cases,

rule CHK-INF fires.
'Ery A A~C

C -
HK-INF TFrnC
By induction hypothesis, the inference algorithm terminateB. i r || A thenI" - A : Type, hence the
equality check terminates by Lemma 9.1, which implies termination of the type checker. O

Lemma 9.3. (Termination of type well-formedness)
If I' + ok then the query’ - A |} Type terminates.

Proof:
By induction onA, using the previous lemma in cade= El t. O

9.3. Completeness of Type Checking
Once we have solved the hard problem of deciding equality, the decidability of typing is easy, provided

we restrict tonormalterms.

Normal and neutral terms. We introduce two predicatésf; (¢ is normal) and |} (¢ is neutral).

ri s rl ri tf rf s

cll x| rs i rpd o At (r,s)
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Theorem 9.2. (Completeness of type checking)
1L.ID:t)andl’ Ht: C #Typethenl' Ht || AandA ~ C.

2. fD:tfrandl Ft: C #£Typethenl -t 19 C.

Proof:
Simultaneously by induction oP. O

Corollary 9.1. (Completeness of type well-formedness)
IfD::T F A:TypeandA | thenT - A || Type.

Proof:
By induction onD. In caseA = Elt, the premised | forcest 1}, hence we can apply the previous
theorem. O

10. Conclusion

We have presented a sound and complete conversion algoritiviLfer. The completeness proof builds
on PERs over untyped expressions, hence, we need—in contrast to Harper and Pfenning’s completeness
proof for type-directed conversion [13]—no Kripke model and no notion of erasure, what we consider an
arguably simpler procedure. We see in principle no obstacle to generalize our results to type theories with
type definition by cases (large eliminations), whereas it is not clear how to treat them with a technique
based on erasure.

The disadvantage of untyped conversion, compared to type-directed conversion, is that it cannot
handle cases where the type of a term provides more information on equality than the shape of a terms,
e. g., unit types, singleton types and signatures with manifest fields [8].

A more general proof of completeness? Our proof uses a-model with full 5-equality thanks to the
ruleDEN-3. We had also considered a weaker model (witl®N- G andDEN-IRR, but withDEN-FUN-3
andDEN-PAIR-3) which only equates weakly convertible objects. Combined with extensional PERSs this
would have been the model closest to our algorithm. But due to the use of substitution in the declarative
formulation, we could not shoWILFs's rules to be valid in such a model. Whether it still can be done,
remains an open question.

Related work. The second author, Pollack, and Takeyama [8] present a modéhfeguality for an
extension of the logical framework by singleton types and signatures with manifest fields. Equality is
tested byn-expansion, followed by-normalization and syntactic comparison. In contrast to this work,
no syntactic specification of the framework and no incremental conversion algorithm are given.
Schirmann and Sarnat [19] have been working on an extension of the Edinburgh Logical Framework
(ELF) by X2-types (LK), following Harper and Pfenning [13]. In comparison\id Fs;, syntactic validity
(Lemma 2.5) and injectivity are non-trivial in their formulation of ELF. Robin Adams [2] has extended
Harper and Pfenning’s algorithm to Luo’s logical framework (i. e., MLF with typeabstraction) with
Y-types and unit.
Goguen [9] gives a typed operational semantics for Martifislogical framework. An extension
to X-types has to our knowledge not yet been considered. Recently, Goguen [10] has proven termination
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and completeness for both the type-directed [13] and the shape-directed equality [6] from the standard
meta-theoretical properties (strong normalization, confluence, subject reduction, etc.) of the logical
framework. He also proposes a method to chéglequality for3- and singleton types by a sequence

of full n-expansion followed bys-reduction [11].

Acknowledgments. We are grateful to Lionel Vaux whose clear presentation of models for this implicit
calculus [21] provided a guideline for our model construction. Thanks to Ulf Norell for proof-reading
an earlier version of this article. The first author is indebted to Frank Pfenning who taught him type-
directed equality and bidirectional type-checking at Carnegie Mellon University in 2000, and to Carsten
SchHirmann for communication on L

APPENDIX.

A. Surjective Pairing Destroys Confluence

Klop [15, pp. 195-208] shows that the untypedalculus with the surjective pairing reductionL, rR) —

r is not confluent (Church-Rosser). It is, however, locally confluent (weakly Church-Rosser), hence, be-
cause of Newman's Lemma, only a term with an infinite reduction sequence can fail to be confluent.
Klop provides the following example.

Y = (AzAy.y(zzy)) Turing’s fixed-point combinator
e = z free variable (or the ter)

c = Y (Acha.e(al, (ca)R))

a = Yc

Sincect —Tt e(tL, (ct)R) anda —™* ca, we can construct the following reduction sequences:

ca—Te(aLl, (ca)R) —T e((ca)L, (ca)R) —T e(ca)
+

ca—"Tc(ca) —T c(e(ca))

The end reducts of both sequences cannot be joined again.

B. On Transitivity of Algorithmic Equality

While transitivity does not hold for the pure algorithmic equality (see Remark 3.1), it can be established
for terms of the same type. The presence of types forbids comparison of function values with pair values,
the stepping stone for transitivity of the untyped equality.

For a derivatiorD of algorithmic equality, we define the measyfg which denotes the number of
rule applications on the longest branchfcounting the rulesQ-EXT-FUN andAQ-EXT-PAIR twice*
We will use this measure for the proof of transitivity and termination of algorithmic equality.

“A similar measure is used by Goguen [10] to prove termination of algorithmic equality restricted th-firas [6].
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Lemma B.1. (Transitivity of typed algorithmic equality)
1. LetD’ + ni : Cl, I + ng CQ, andI’ + ng : C'3. If D :: ny ~ N9 andD’ :: ng ~ N3 then
ny ~ ns.

2. Letl’ Fwy,wo, w3 : C. If D ::wy ~we andD’ :: wy ~ w3 thenw, ~ ws.
3. Letl' Ftq,t0,t3: C. If t1] ~ta] andtgi ~t3] thentll ~t3].

Proof:

The third proposition is an immediate consequence of the second, using soundness of weak head eval-
uation. We prove 1. and 2. simultaneously by induction®h+ |D’|, using inversion for typing and
soundness of algorithmic equality.

e Case:
AQ-NE-FUN e sl ~s2l AQ-NE-FUN 2 s s2l ~ 83l
nys1 ~ N2 82 N2 82 ~ N3 83
I'Fn;:FunA; (A\zB;) &
I'bs;: A; inversion fori = 1,2, 3
ny ~ ng firstind. hyp.
I' Fny =ng =n3: Fun A; (AxBy) &
I' F Fun A; (AxB;) = Fun Ay (AzBs) : Type &
I' - Fun As (AxBg) = Fun Az (AzBs) : Type soundness of
I' H A = Ay = Ag : Type injectivity
I'Fs; i A 1=1,2,3, EQ-CONV
s1l ~ s3] second ind. hyp.
ny s1l ~nsgs3l AQ-NE-FUN

e In the following casey is chosen such that ¢ FV(n).

(Axt1)Qx ~ (Axte)Qx (Azty)Qr ~ nQx
AQ-EXT-FUN AQ-EXT-FUN
ATty ~ Axts Axrty ~n

C =FunA(\zB) &
I'z:Abt1,t0: B inversion
(Azt;)Qx \, w; fori = 1,2, assumption
ti "\, w; fori = 1,2, def. of@
I'tt;=w;: B soundness of evaluation
Nz:AkFnz: B weakeningFUN-E
wy ~nNT ind. hyp.
(A\xt1)Qr ~ nQx sincen@Qx \, nx

Axty ~n AQ-EXT-FUN
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e Case:
(Azty)Qz ~ nyQu
AQ-EXT-FUN Nno ~ N3
)\:Etl ~ N9
C = Fun A (\xB) &
I'Ne:A+-t1:B inversion
I'Ne:A+nQx:B for i = 2, 3, weakeningFuN-E
no@x ~ n3Qx AQ-NE-FUN
(Azty)Qz ~ n3Qx ind. hyp.
Axty ~ ng AQ-EXT-FUN

C. Alternative to Inductive-Recursive Definition

In section 5.2 we have defined intensional type equdlity- V' € Type and type interpretatiofi/]
simultaneously by induction-recursion. In the following, we give conventional definitions of the two
concepts.

Type interpretation. Type interpretation.] € D — Rel is a partial function specified by the following
equations.

INT-SET-F [Set] = Set

INT-SET-E [Elv] = &l(v)

INT-FUN-F [FunV F] = Fun([V],v— [Fv])
]

INT-PAIR-F  [PairV F Pair([V],v — [F v]

~—

Lemma C.1. Type interpretation_] € D — Rel is a well-defined partial function.

Proof:

Well-definedness, i.e., that = V' implies [V'] = [V"], follows by injectivity and pairwise distinct-

ness of type constructors. The latter guarantees that we can define the type interpretation by pattern
matching althougtD is not necessarily a free structure. For instance, in the absence of the inequality
Set # Fun V F (DEN-SET-NOT-DEP), the defining equations of type interpretation could imply the in-
consistencySet = Fun([V],v — [F v]). Injectivity proves that, e.g[Fun V' F] = [Fun V' F'] if

FunV F = Fun V' F’, since ther/ = V' andF' = F’ by law DEN-DEP-INJ. 0
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Intensional type equality 7ype € Rel is is given inductively by the following rules. Note that rule
TYEQ-DEP has an infinitary premise.

TYEQ-SET-F TYEQ-SET-E v =€ Sel
Q Set = Set € Type Q Elv = Elv' € Type
=V'eT Fuv=F'v e Type for all !
TYEQ-DEP V=V € Type Y v € Typeforall (v, ') € [V] ¢ € {Fun, Pair}

cVF =cV'F" € Type

In the last rule, ifV] is not defined, the quantification is to be read as empty.

The next lemma proves the following: For all semantical types Type, the interpretationV]
is a well-defined PER, and intensionally equal types have the same interpretation. Topgtker,
Fam(Zype).

Lemma C.2. (Soundness of intensional type equality)
If D::V =V’ e Type then[V],[V'] € Perand[V] = [V'].

Proof:
By induction on the ordinal height @. We consider the following case:

V =V"e Type Fov=F'v e€Typeforalv=1 €[V]
FunV FF=Fun V' F' € Type

We have to show tha&un([V],v — [F v]) andFun([V'],v — [F’v]) are PERs and equal. By induction
hypothesis[V] and[V’] are PERs and equal. Assume- v € [V] arbitrary. We may use the induction
hypothesis on the assumptioRs = F' v, F'v' = F' v’ € Type to deducdF v] = [F v'| € Per, hence,
the family 7, defined byF(v) := [Fv], is in Fam([V]), sincev andv’ were arbitrary. Analogously, the
second family#’, whereF’(v) := [F’v], it holds that7" € Fam([V’]). By Lemma 5.2, Fun([V],F)
andFun([V'], F') are PERs. Also by induction hypothesis, we obfdirv] = [F’ v] for arbitraryv, so
the two families# andF’ are equal. This entails our goal. O

Finally, we can prove thafype is a itself a PER.

Lemma C.3. (Soundness of intensional type equality)
1. f DV =Ve € Type andVy = V3 € Type thenVy = Vs € Type.

2. fD::V =V'e TypethenV' =V € Type.

Proof:
Each by induction on the ordinal heightBf For transitivity (1.), we consider the case:

Vi =Vy € Type Fy vy = Fy vy € Type forall vy = vy € [V]
Fun Vi Fy = Fun V5 Fy € Type

Vo = V3 € Type Fy vy = F3 v3 € Type forall vg = vs € [V]
Fun Vo Fy = Fun V3 F3 € Type
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By soundness of intensional type equality (Lemma C.2), we lMe= [V»] € Per, and by the first
induction hypothesisy; = V3 € Type. Assume arbitrary = v’ € [V;]. Since[V;]isa PERy = €
[V1], hence, als@’ = v’ € [V;]. By assumptiorf; v = F» v' € Type andFy v’ = F3 v’ € Type, hence,
we can apply the induction hypothesis to obtainv = F3 v’ € Type. Sincev andv’ were arbitrary
Fun V4 F1 = Fun V3 F5 € Type by rule TYEQ-DEP. O
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