
Yale University

Department of Computer Science

The ∇-Calculus.
Functional Programming with Higher-order

Encodings.

Carsten Schürmann, Adam Poswolsky, Jeffrey Sarnat

YALEU/DCS/TR-1272
November 2, 2004, v1.0

This research is funded by NFS under grants CCR-0133502 and CCR-0325808.

Abstract

Higher-order encodings use functions provided by one language to represent vari-
able binders of another. They lead to concise and elegant representations, which
historically have been difficult to analyze and manipulate.

In this paper we present the ∇-calculus, a calculus for defining general re-
cursive functions over higher-order encodings. To avoid problems commonly as-
sociated with using the same function space for representations and computa-
tions, we separate one from the other. The simply-typed λ-calculus plays the
role of the representation-level. The computation-level contains not only the
usual computational primitives but also an embedding of the representation-
level. It distinguishes itself from similar systems by allowing recursion under
representation-level λ-binders while permitting a natural style of programming
which we believe scales to other logical frameworks. Sample programs include
bracket abstraction, parallel reduction, and an evaluator for a simple language
with first-class continuations.

1 Introduction

Higher-order abstract syntax refers to the technique of using a meta-language,
or logical framework, to encode an object language in such a way that variables
of the object language are represented by the variables of the logical framework.
This deceptively simple idea has far reaching consequences for the design of
languages that aim to manipulate these encodings. On one hand, higher-order
encodings are often very concise and elegant since they take advantage of com-
mon concepts and operations automatically provided by the logical framework,
including variable renaming, capture avoiding substitutions, and hypothetical
judgments. On the other hand, higher-order encodings are not inductive in the
usual sense, which means that they are difficult to analyze and manipulate.

Many attempts have been made to integrate advanced encoding techniques
into functional programming languages. FreshML [GP99] supports implicit vari-
able renaming for first-order encodings. The modal λ-calculus supports primitive
recursion over higher-order encodings via an iterator. However, function defini-
tion via iteration is naturally limited [SDP01].

In this paper, we present the ∇-calculus, a step towards integrating logical
frameworks into functional programming. It supports general recursive functions
over higher-order encodings without burdening the representational expressive-
ness of the logical framework. The ∇-calculus distinguishes itself from similar
systems by allowing recursion under representation-level λ-binders while per-
mitting a natural style of programming, which we believe scales to other logical
frameworks.

To avoid problems commonly associated with using the same function space
for representations and computations, we separate one from the other. The
simply-typed λ-calculus plays the role of the representation-level and provides a
function space enabling higher-order encodings. A second simply-typed language
plays the role of the computation-level. It provides embeddings of the higher-
order encodings, function definition by cases, and insurances for safe returns
from computation under representation-level λ-binders.

The resulting system allows us, for example, to write computation-level func-
tions that recurse over the usual higher-order encoding of the untyped λ-calculus
(see Example 4). It is general enough to permit case analysis over any representation-
level object of any representation-level type. A prototype implementation [PS04]
of the ∇-calculus, including a type-checker, an interactive runtime-system, and a
collection of examples is available from the website http://www.cs.yale.edu/~delphin.

This paper is organized as follows. We explain the use of the simply-typed
λ-calculus as a logical framework in Section 2. We introduce the ∇-calculus
in Section 3. It is divided into several subsections describing the conventional
features of the ∇-calculus and those constructs that facilitate programming with
higher-order encodings. The static and operational semantics of the ∇-calculus
are given in Section 4, while the meta-theoretic properties of the calculus are
discussed and analyzed in Section 5. We assess results and discuss related and
future work in Section 6.

2

2 The Simply-Typed Logical Framework

We choose the simply-typed λ-calculus as our logical framework. It is not as ex-
pressive as dependently-typed frameworks, such as LF [HHP93], but is expressive
enough to permit interesting higher-order encodings.

Types: A,B ::= a | A → B
Objects: M,N ::= x | c | λx : A.M | M N

Signatures: Σ ::= · | Σ, a : type | Σ, c : A
Contexts: Γ ::= · | Γ, x : A

We use a for type constants, c for object constants, and x for variables. We
assume that constants and variables are declared at most once in a signature
and context, respectively. To maintain this invariant, we tacitly rename bound
variables and use capture-avoiding substitutions. The typing judgments for ob-
jects and signatures are standard. Type-level and term-level constants must be
declared in the signature.

Definition 1 (Typing judgment). Γ ` M : A and Γ ` A : type is defined by
the following rules:

Γ (x) = A
ofvar

Γ ` x : A

Σ(c) = A
ofconst

Γ ` c : A

Γ, x : A ` M : B
oflam

Γ ` λx : A.M : A → B

Γ ` M : A → B Γ ` N : A
ofapp

Γ ` M N : B

Σ(a) = type
tpconst

Γ ` a : type

Γ ` A : type Γ ` B : type
tpArrow

Γ ` A → B : type

Our notion of definitional equality is obtained by taking the reflexive, transi-
tive, and symmetric closure of β- and η-conversion [Coq91]. We write Γ ` M ≡
N : A if and only if M is βη-equivalent to N and both have type A. For every
well-typed object M of type A, there exists a unique β-normal, η-long term M ′

such that Γ ` M ≡ M ′ : A [Pfe92]. We refer to M ′ as being canonical, which
we denote as Γ ` M ′ ⇑ A.

Throughout this paper, our examples will use encodings of natural numbers,
first-order logic, and the untyped λ-calculus. An encoding consists of a signature
and a representation function, which maps elements from our domain of dis-
course into canonical forms in our logical framework. We say that an encoding
is adequate if the representation function is an isomorphism.

In all of the examples below, the signatures for our encoding are listed in
italics and our translation functions p−q are defined by the given sets of equa-
tions.

Example 1 (Booleans). Boolean values b ::= true | false can be represented as
objects of type bool over the signature which includes the following declaration:

3

ptrueq = true true : bool
pfalseq = false false : bool

�

Example 2 (Natural numbers).

nat : type
p0q = z z : nat

pn + 1q = s pnq s : nat → nat

�

Examples 2 and 1 are first-order encodings because none of the constants
take arguments of functional types.

Example 3 (First order logic with equality). Terms t ::= x and first order formu-
las F ::= ∀x. F | F1 ⊃ F2 | ¬F | t1 = t2 are represented as objects of type i and
type o, respectively, in a signature that also includes the following declarations:

p∀x. Fq = forall (λx : i. pFq) forall : (i → o) → o
p¬Fq = neg pFq neg : o → o

pF1 ⊃ F2q = impl pF1q pF2q impl : o → o → o
pt1 = t2q = eq pt1q pt2q eq : i → i → o

pxq = x

Example 4 (Untyped λ-expressions). Untyped λ-expressions e ::= x | lam x. e |
e1 e2 are encoded as follows:

exp : type
plam x. eq = lam (λx : exp. peq) lam : (exp → exp) → exp
pe1 e2q = app pe1q pe2q app : exp → exp → exp
pxq = x

The encodings of first-order formulas and λ-calculus expressions illustrate
the use of higher-order abstract syntax since object-language variable-binders
use logical-framework functions. Because little meaningful analysis can be done
on variables in our logical framework, the only interesting operation that can be
performed on a variable is substitution. Thus, it is most helpful to think of a
term of type A → B not as representing a computation, but as representing a
term of type B that has a hole of type A.

We demonstrate the formulation of an adequacy theorem. Each case can be
proven by a straightforward induction.

Theorem 1 (Adequacy of exp). Adequacy holds for our representation of
untyped λ-expressions.

4

Types: τ, σ ::= 〈A〉 | τ ⇒ σ | τ ? σ | �τ

Expressions: e, f ::= u | 〈M〉 | e1 7→τ e2 | εx : A. e | εu ∈ τ . e

| e1 · e2 | (e1 | e2) | rec u ∈ τ . e

| (e1, e2) | fst e | snd e | empty

| νx : A. e | pop e | ∇x : A. e

Fig. 1. Syntactic categories of the ∇-calculus.

1. If e is an expression with free variables among x1, . . . , xn,
then x1 : exp, . . . , xn : exp ` peq ⇑ exp.

2. If x1 : exp, . . . , xn : exp ` M ⇑ exp
then M = peq for some expression e with free variables among x1, . . . , xn.

3. p−q is a bijection between expressions and canonical forms where
p[e′/x]eq = [pe′q/x]peq. �

3 The ∇-Calculus

The logical-framework type exp is not inductive because the constructor lam :
(exp → exp) → exp has a negative occurrence [PM93] of exp. This is not just a
formal observation, since this property has deep consequences for the design of
the∇-calculus, which needs to provide a notion of computation general enough to
handle higher-order datatypes of this kind. We offer the ability to recurse under
λ-binders and consider cases over functions of type exp → exp while continuing
to guarantee the adequacy of the encoding. Allowing for this, as well as general
recursive computation, can be seen as the main contribution of this work.

In the∇-calculus, expressions permit function definition by cases and alterna-
tions instead of providing explicit λ-binders on the computation-level. Computation-
level expressions and types are summarized in Figure 1 and explained in the
remainder of this section.

3.1 Function Definition by Cases and Recursion

In the ∇-calculus, we draw a separating line between the levels of represen-
tation and computation. Representation-level types, such as nat and exp are
injected into computation-level types 〈nat〉 and 〈exp〉. Likewise, representation-
level constants, such as (s z) and lam (λx : exp. x), are injected into computation-
level terms 〈s z〉 and 〈lam (λx : exp. x)〉. There are no user defined datatypes on
the computation-level; all type and constant declarations must be done at the
representation-level.

Example 5 (Addition). We informally define the function plus over the represen-
tation of natural numbers from Example 2 in the following manner:

plus z y = y
plus (s x) y = s (plus x y)

5

We represent this formally in the ∇-calculus as follows:

rec plus ∈ 〈nat〉 ⇒ 〈nat〉 ⇒ 〈nat〉.
εy : nat. 〈z〉 7→ 〈y〉 7→ 〈y〉
| εx : nat. 〈s x〉 7→ εy : nat. 〈y〉 7→ 〈s〉 ◦ (plus · 〈x〉 · 〈y〉)

�

The recursion operator is conventional. In later examples we will omit it
for the sake of readability. Alternation, “|”, separates cases that may be chosen
for evaluation non-deterministically. It binds more tightly than the recursion
operator rec u ∈ τ . e, but not as tight as any of the other operators. Individual
cases are of the form e1 7→τ e2, where e1 can be thought of as a guard. Only when
such a case is applied to an object equivalent to e1 (as defined in Section 4.3)
is e2 evaluated. In particular, if e1 is a value of type 〈A〉, then our notion of
equality is given by our logical framework’s notion of definitional equality. We
refer to e1 as the pattern and e2 as the body of the case. The index τ states
the type of the pattern, but is usually omitted when the type of the pattern
can be easily inferred. In conventional programming languages, variables that
occur in patterns are implicitly declared, whereas in the ∇-calculus they must
be declared explicitly by εx : A. e for reasons explained in Section 3.2. A similar
declaration for the computation-level εu ∈ τ . e permits higher-order functions
and is discussed in detail in Section 3.5. Application in the ∇-calculus is written
as e1 · e2 in order to avoid confusion with representation-level application, which
is expressed via juxtaposition. The notation e1 ◦ e2 is syntactic sugar that lifts
representation-level application to the computation-level.

e1 ◦A,B
e2 = εx : A → B. 〈x〉 7→〈A→B〉 εy : A. 〈y〉 7→〈A〉 〈x y〉

We refer to ◦ without type annotations because they are easily inferable.

3.2 Traversal of λ-Binders

Next, we explain the operators ν and pop from Figure 1. Recall the encoding of
first-order logic from Example 3.

As a running example, we consider Kolmogorov’s double-negation interpre-
tation, which transforms formulas from classical logic into intuitionistic logic in
the following way:

dneg (eq t1 t2) = neg (neg (eq t1 t2))
dneg (impl F1 F2) = neg (neg (impl (dneg F1) (dneg F2)))
dneg (neg F) = neg (neg (neg (dneg F)))
dneg (forall F) = neg (neg (forall F ′))

where F ′ x = dneg (F x)
for some new parameter x : i

In the last case dneg must recurse on the body F of the forall term, which is a
representation-level function of type i → o. Since F is definitionally equivalent

6

to a canonical term that starts with a λ-binder, we strip away the λ-binder
by applying F to some new parameter x before invoking dneg. The result of
the computation depends on x and is hence written as F ′ x, where F ′ is a
representation-level function of type i → o.

The first three cases of dneg can be implemented in the ∇-calculus with con-
structs we have already introduced. As for the forall case, we need to add new
constructs to our language. We feel that there are several interesting possibilities
worth considering. One possibility would be to introduce a computation-level op-
erator λ̂, which lifts representation-level abstraction to the computation-level in
much the same way that the syntactic-sugar ◦ lifts representation-level applica-
tion. In this case, we could write the forall case as

εF : i → o. 〈forall F 〉 7→ 〈neg〉 ◦ (〈neg〉 ◦ (〈forall〉 ◦ (λ̂x : i. dneg · 〈F x〉)))

where the subterm (λ̂x : i. dneg · 〈F x〉) has type 〈i → o〉. In principle this is a
possible solution. Adequacy is preserved because although the body of λ̂ may
diverge or get stuck, any value it computes must be of the form 〈M〉. However,
λ̂ is too limited for our purposes because it always returns a representation-
level function, even if the expected result is of a base type (see Example 6).
Meta-ML [TS00] employs a construct similar to λ̂.

Another possibility is to add an explicit parameter introduction operator λ̄

εF : i → o. 〈forall F 〉 7→ λ̄x : i.
case dneg · 〈F x〉

of εF ′ : i → o. 〈F ′ x〉 7→ 〈neg (neg (forall F ′))〉

where we write “case e1 of e2” as syntactic sugar for “e2 · e1”. In contrast to λ̂,
the type of the subterm starting with λ̄ is 〈o〉. Since the recursive call results
in a value of type 〈o〉, and forall requires a value of type i → o, we need a
way to turn the result into a value of type 〈i → o〉. Furthermore, because this
value escapes x’s declaration, it should not contain any free occurrences of x.
Ideally, higher-order pattern matching would yield F ′, which is the result of
abstracting all occurrences of x from the result of the recursive call. But there
is no guarantee that this will succeed, because F ′ is declared within the scope
of x. For example, if dneg · 〈F x〉 returns 〈eq x x〉, then F ′ = (λy : i. eq x x) and
F ′ = (λy : i. eq y y) are among the possible solutions to this matching problem.
To remedy this, F ′ can be declared outside of the scope of x, and thus could not
possibly be instantiated with a term containing x:

εF : i → o. 〈forall F 〉 7→ εF ′ : i → o.
λ̄x : i.case dneg · 〈F x〉 of 〈F ′ x〉 7→ 〈neg (neg (forall F ′))〉

In this case, the only solution to the matching problem is F ′ = (λy : i. eq y y),
which illustrates the necessity of explicit ε-declarations. However, we do not
include λ̄ in the ∇-calculus since, as we have seen, it allows us to write functions
that let parameters escape their scope.

7

Instead, we do include two operators and one new type constructor that
can be found in Figure 1. The operator ν is similar to λ̄ in that it introduces
new parameters, but different because it statically requires that these parameters
cannot extrude their scope. The operator “pop” provides such guarantees. These
guarantees are communicated through the type �τ , which pop introduces and
ν eliminates. The complete function dneg is given below.

dneg : 〈o〉 ⇒ 〈o〉
= εt1 : i. εt2 : i. 〈eq t1 t2〉 7→ 〈neg (neg (eq t1 t2))〉
| εF1 : o. εF2 : o.

〈imp F1 F2〉 7→ 〈neg〉 ◦ (〈neg〉 ◦ (〈imp〉 ◦ (dneg · 〈F1〉) ◦ (dneg · 〈F2〉)))
| εF : o. 〈neg F 〉 7→ 〈neg〉 ◦ (〈neg〉 ◦ (〈neg〉 ◦ (dneg · 〈F 〉)))
| εF : i → o. 〈forall F 〉 7→ εF ′ : i → o.

νx : i. case dneg · 〈F x〉 of 〈F ′ x〉 7→ pop 〈neg (neg (forall F ′))〉

The body of the ν is of type �〈o〉; the � ensures that whatever value this
expression evaluates to does not contain x. The body of pop has type 〈o〉 only
because it neither contains x nor any ε-quantified variable the may depend on x.
Thus, the subexpression “pop 〈forall F ′〉” introduces type �〈o〉. A precise type
theoretic definition and analysis of the � type will be given in Section 4.

3.3 Pattern-matching Parameters

Finally, we turn to the last unexplained operator from Figure 1, the ∇-operator,
which is used to match parameters introduced by ν.

Example 6 (Counting variable occurrences). Consider a function that counts the
number of occurrences of bound variables in an untyped λ-expression from Ex-
ample 4.

cntvar (x) = (s z) where x : exp is a parameter
cntvar (app e1 e2) = plus (cntvar e1) (cntvar e2)
cntvar (lam e) = cntvar (e x) for some new parameter x : exp

The first of the three cases corresponds to the parameter case that matches
any parameter of type exp regardless of where and when it was introduced.
Formally, we use the ∇-operator to implement this case.

cntvar : 〈exp〉 ⇒ 〈nat〉
= ∇x : exp. 〈x〉 7→ 〈s z〉
| εe1 : exp. εe2 : exp.

〈app e1 e2〉 7→ plus · (cntvar · 〈e1〉) · (cntvar · 〈e2〉)
| εe : exp → exp.

〈lam e〉 7→ εn : nat.
νx : exp.

(〈n〉 7→ pop 〈n〉) · (cntvar · 〈e x〉)

�

8

Notice that, in the above example, if we were to replace the ∇ with ε, it
would still be possible for cntvar to return correct answers, since εx : exp can
match any expression of type exp including parameters; however, it would also
be possible for cntvar to always return 〈s z〉 for the same reason.

Example 7 (Combinators). The combinators c ::= S | K | MP c1 c2 are repre-
sented as objects of type comb as follows:

pKq = K K : comb
pSq = S S : comb

pMP c1 c2q = MP pc1q pc2q MP : comb → comb → comb

Any simply-typed λ-expression from Example 4 can be converted into a combi-
nator in a two-step algorithm. The first step is called bracket abstraction, or ba,
which converts a parametric combinator (a representation-level function of type
comb → comb) into a combinator with one less parameter (of type comb). If M
has type comb → comb and N has type comb then 〈MP〉 ◦ (ba · 〈M〉)◦ 〈N〉 results
in a term that is equivalent to 〈MN〉 in combinator logic.

ba (λx : comb. x) = MP (MP S K) K
ba (λx : comb. z) = MP K z where z : comb is a parameter
ba (λx : comb.K) = MP K K
ba (λx : comb.S) = MP K S
ba (λx : comb.MP (c1 x) (c2 x)) = MP (MP S (ba c1)) (ba c2)

ba : 〈comb → comb〉 ⇒ 〈comb〉
= 〈λx : comb. x〉 7→ 〈MP (MP S K) K〉
| ∇z : comb. 〈λx : comb. z〉 7→ 〈MP K z〉
| 〈λx : comb.K〉 7→ 〈MP K K〉
| 〈λx : comb.S〉 7→ 〈MP K S〉
| εc1 : comb → comb. εc2 : comb → comb.

〈λx : comb.MP (c1 x) (c2 x)〉 7→
〈MP〉 ◦ (〈MP〉 ◦ 〈S〉 ◦ (ba · 〈c1〉)) ◦ (ba · 〈c2〉)

The first two cases of ba illustrate how to distinguish x, which is to be abstracted,
from parameters that are introduced in the function convert, which we discuss
next. The function convert traverses λ-expressions and uses ba to convert them
into combinators.

convert (y z) = z where y : comb → exp and z : comb are parameters
convert (app e1 e2) = MP (convert e1) (convert e2)
convert (lam e) = ba c where c z = convert (e (y z))

and y : comb → exp
and z : comb are parameters

The last case illustrates how a parameter of functional type may introduce
information to be used when the parameter is matched. Rather than introduce

9

a parameter x of type exp, we introduce a parameter of type comb → exp that
carries a combinator as “payload.” In our example, the payload is another pa-
rameter z : comb, the image of x under convert. This technique is applicable to
a wide range of examples. We formalize convert below:

convert : 〈exp〉 ⇒ 〈comb〉
= ∇y : comb → exp.∇z : comb. 〈y z〉 7→ 〈z〉
| εe1 : exp. εe2 : exp.

〈app e1 e2〉 7→ 〈MP〉 ◦ (convert · 〈e1〉) ◦ (convert · 〈e2〉)
| εe : exp → exp. 〈lam e〉 7→ εc : comb → comb.

νy : comb → exp. νz : comb.
case convert · 〈e (y z)〉 of 〈c z〉 7→ pop (pop (ba · 〈c〉))

�

We summarize a few of the most important properties of the ∇-operator.
First, it is intuitively appealing to have one base case (the ∇-case) for each
class of parameters, because what happens in these cases is uniquely defined in
one place. Second, payload carrying parameters permit sophisticated base cases,
which simplify the reading of a program because all information shared between
the introduction and matching of parameters must be made explicit.

Example 8 (Counting abstractions). The function below counts the number of
occurrences of λ-abstractions in an expression. It again provides one static case
that matches any parameter of type exp and it has type 〈exp〉 ⇒ 〈nat〉.

cntlam x = z
where x : exp is a parameter

cntlam (app e1 e2) = plus (cntlam e1) (cntlam e2)
cntlam (lam e) = s (cntlam (e x)

for some new parameter x : exp)

Its representation as an iteration follows the same ideas as in the example above.

cntlam : 〈exp〉 ⇒ 〈nat〉
= ∇x : exp. 〈x〉 7→ 〈z〉
| εe1 : exp.

εe2 : exp.
〈app e1 e2〉 7→ plus · (cntlam · 〈e1〉) · (cntlam · 〈e2〉)

| εe : exp → exp.
〈lam e〉 7→ εn : nat.

νp : exp.
case cntlam · 〈e p〉 of 〈n〉 7→ pop 〈s n〉

�

10

3.4 Pairs and Mutual Recursion

None of the examples presented so far are mutually recursive. Nevertheless, the
∇-calculus provides meta-level pairs and projections; this permits the formula-
tion of mutually recursive functions by means of tupeling all mutually recursive
parts into one recursive variable. Projections from this variable result then in
the respective recursive calls.

Example 9 (Parallel reduction). Parallel reduction is here defined over expres-
sions (from Example 4). We state the function first informally:

par x = x
where x : exp is a parameter

par (app e1 e2) = par′ e1 (par e2)
par (lam e1) = lam (λx : exp. par (e1 x)

where x : exp is a parameter)

par′ x e′2 = app x e′2
where x : exp is a parameter

par′ (app e1 e2) e′2 = app (par′ e1 (par e2)) e′2
par′ (lam e1) e′2 = (λx. par (e1 x)

where x : exp is a parameter) e′2

The type of par is 〈exp〉 ⇒ 〈exp〉; the auxiliary function par′ has type 〈exp〉 →
〈exp〉 ⇒ 〈exp〉. Mutually recursive functions are expressed in the ∇-calculus
by meta-level pairing, and the individual parts as projections “fst par” and
“snd par”.

par : (〈exp〉 ⇒ 〈exp〉) ? (〈exp〉 ⇒ 〈exp〉 ⇒ 〈exp〉)
= ∇x : exp. 〈x〉 7→ 〈x〉
| εe1 : exp.

εe2 : exp.
〈app e1 e2〉 7→ (snd par) · 〈e1〉 · ((fst par) · 〈e2〉)

| εe1 : exp → exp.
〈lam e1〉 7→ εf1 : exp → exp.

νx : exp.
case (fst par) · 〈e1 x〉 of 〈f1 x〉 7→ pop 〈lam f1〉

+ (∇x : exp. εe′2 : exp.
〈x〉 7→ 〈e′2〉 7→ 〈app x e′2〉

| εe1 : exp.
εe2 : exp.

εe′2 : exp.
〈app e1 e2〉 7→ 〈e′2〉 7→ 〈app〉 ◦ ((snd par) · 〈e1〉 · ((fst par) · 〈e2〉)) ◦ 〈e′2〉

| εe1 : exp → exp.
εe′2 : exp.
〈lam e1〉 7→ 〈e′2〉 7→ εf1 : exp → exp.

νx : exp.
case (fst par) · 〈e1 x〉 of 〈f1 x〉 7→ pop 〈f1 e′2〉

)

11

3.5 Higher-order Functions

Higher-order programming is also possible in the ∇-calculus. Consider an eval-
uator for our untyped λ-calculus extended by continuations as first-class values.
We write κ for continuation parameters.

Expressions e ::= . . . | callcc κ. e | throw κ e

Continuations parameters are represented as parameters of type cont.

pcallcc κ. eq = callcc (λk : cont. peq) callcc : (cont → exp) → exp
pthrow κ eq = throw peq pκq app : cont → (exp → exp)

Example 10. Let ev be a continuation passing evaluator for this language that
we define as follows.

ev (app e1 e2) K = ev e1 (λ(lam (λx : exp. e′1 x)). ev e2 (λv2 : exp. ev (e′1 v2) K))
ev (lam λx : exp. e1 x) K = K (lam λx : exp. e1 x)
ev (callcc λk : cont. e1 k) K = ev (e1 k) K

where k : cont is a new continuation parameter
and k is bound to K

ev (throw k e1) K = K ′ e1

if k is bound to K ′

The presentation of the ev in the ∇-calculus is not straightforward. A continu-
ation is necessarily a meta-level function 〈exp〉 ⇒ 〈exp〉, because continuations
must consider cases of values. Consider for example the app case, where the out-
ermost continuation on the lefthand-side of the equation pattern-matches against
a λ-term, the result of evaluating e1. Furthermore, substituting a meta-level con-
tinuation into an object-level parameter is impossible in the ∇-calculus because
of the division into layers. Thus we introduce an environment L ∈ 〈cont〉 ⇒
(〈exp〉 ⇒ 〈exp〉) that maps continuation parameters to continuations. It is the
first argument to ev, and initially empty. We write “fail”, for a program that
does not make progress, but gets stuck in the next step.

ev : 〈exp〉 ⇒ (〈exp〉 ⇒ (〈cont〉 ⇒ 〈exp〉 ⇒ 〈exp〉) ⇒ 〈exp〉) ⇒ (〈cont〉 ⇒ 〈exp〉 ⇒ 〈exp〉) ⇒ 〈exp〉
= εe1 : exp.

εe2 : exp.
〈app e1 e2〉 7→ εk : 〈exp〉 ⇒ (〈cont〉 ⇒ 〈exp〉 ⇒ 〈exp〉) ⇒ 〈exp〉. k 7→ ev · 〈e1〉 · εx1 : exp → exp.
〈lam x1〉 7→ ev · 〈e2〉 · εx2 : exp.
〈x2〉 7→ ev · 〈x1 x2〉 · k

| εe1 : exp → exp.
〈lam e1〉 7→ εk : 〈exp〉 ⇒ (〈cont〉 ⇒ 〈exp〉 ⇒ 〈exp〉) ⇒ 〈exp〉. k 7→ k · 〈lam e1〉

| εe1 : cont → exp.
〈callcc e1〉 7→ εk : 〈exp〉 ⇒ (〈cont〉 ⇒ 〈exp〉 ⇒ 〈exp〉) ⇒ 〈exp〉. k 7→

εl : 〈cont〉 ⇒ 〈exp〉 ⇒ 〈exp〉. l 7→ εv : 〈exp〉. νk′ : cont.
case ev · 〈e1 k′〉 · k · (l | 〈k′〉 7→ εx : exp. 〈x〉 7→ k · 〈x〉 · l) of v 7→ pop v

| ∇k : cont. εe1 : exp.
〈throw k e1〉 7→ εk′ : 〈exp〉 ⇒ (〈cont〉 ⇒ 〈exp〉 ⇒ 〈exp〉) ⇒ 〈exp〉. k′ 7→ ev · 〈e1〉 · εx : exp.
〈x〉 7→ εl : 〈cont〉 ⇒ 〈exp〉 ⇒ 〈exp〉. l 7→ l · 〈k〉 · 〈x〉

12

�

This technique of handling and computing with meta-level functions has a
second interesting application. As second example, consider the usual higher-
order encoding of the untyped λ-calculus from Example 4, an arbitrary domain
type D, and two functions g : D → D → D, and h : (D → D) → D.

Example 11 (Iteration). In the ∇-calculus we define iteration over higher-order
encodings that replaces all constants app by g and all constants lam by g before
reducing the term via a helper function f ′. f ′ takes two arguments, an environ-
ment k of type 〈exp〉 ⇒ D and e of type 〈exp〉. Let i = εx : exp. 〈x〉 7→ empty be
the initial environment.

f ′ : (〈exp〉 ⇒ D) ⇒ 〈exp〉 ⇒ 〈D〉
= εk ∈ (exp ⇒ D). k 7→

(∇x : exp. 〈x〉 7→ k · 〈x〉
| εe1 : exp.

εe2 : exp.
〈app e1 e2〉 7→ g · (f ′ · k · 〈e1〉) · (f ′ · k · 〈e2〉)

| εe : exp → exp.
〈lam e〉 7→ h · (εu ∈ D.u 7→ εv ∈ D.

νx : exp.
(〈v〉 7→ pop〈v〉) · (f ′ · (k | 〈x〉 7→ u) · 〈e x〉)))

f : 〈exp〉 ⇒ D
= εe : exp. 〈e〉 7→ f ′ · i · 〈e〉

3.6 More Examples

Below we present more examples. We start with an implementation of the con-
junction function on booleans, and the “identity test” on parametric λ-calculus
expressions, both of which are used in subsequent examples.

Example 12 (Conjunction). Computing the conjunction of two Booleans value
illustrates the use of variables in patterns. Informally we implement the Boolean
operation and as follows.

and true b = b
and false b = false

A formal representation of and in the ∇-calculus is then as follows:

and : 〈bool〉 ⇒ 〈bool〉 ⇒ 〈bool〉
= εb : bool.

〈true〉 7→ 〈b〉 7→ 〈b〉
| εb : bool.

〈false〉 7→ 〈b〉 7→ 〈false〉

�

13

Example 13 (Identity test). Below is a function which decides if a parametric
function mapping exp to exp is the identity function or not. The function has
type 〈exp → exp〉 ⇒ 〈bool〉. This example, along with Example 15 will be used
by Example 16

idtest (λx : exp. app (E1 x) (E2 x)) = false
idtest (λx : exp. lam λy : exp. E x y) = false
idtest (λx : exp. x) = true

The identity test function is hence represented in the ∇-calculus as follows.

idtest : 〈exp → exp〉 ⇒ 〈bool〉
= 〈λx : exp. x〉 7→ 〈true〉
| εe1 : exp → exp.

εe2 : exp → exp.
〈λx : exp. app (e1 x) (e2 x)〉 7→ 〈false〉

| εe : exp → exp → exp.
〈λx : exp. lam λy : exp. e x y〉 7→ 〈false〉

�

Functions in the ∇-calculus may be nested. As example, consider a decision
procedure that tests if an untyped λ-expression is a β-redex. To remind the
reader β-reduction are defined as follows.

β-reduction: (λx.E1) E2 [E2/x](E1)

(λx.E1) E2 is called a β redex.

Example 14 (β-redex test). The β-redex test function has type 〈exp〉 ⇒ 〈bool〉
and can informally be defined as follows.

betatest F = case f of (lam f) 7→ false
| (app E1 E2) 7→ (case E1 of (lam E′) 7→ true

| (app E′
1 E′

2) 7→ false)

Its representation in our calculus is:

betatest : 〈exp〉 ⇒ 〈bool〉
= εf : exp → exp.

〈lam f〉 7→ 〈false〉
| εe1 : exp.

εe2 : exp.
〈app e1 e2〉 7→ case 〈e1〉 of εf : exp → exp.

〈lam f〉 7→ 〈true〉
| εe3 : exp.

εe4 : exp.
〈app e3 e4〉 7→ 〈false〉

�

14

The following example will be useful later on.

Example 15 (Constant test). Below we define a function which returns true if a
given object of type exp → exp (see Example 4) is constant with respect to the
first argument (e.g. the given expression-with-a-hole doesn’t use its hole). This
function is used along with Example 13 in Example 16.

const (λx : exp. y) = true
where y : exp is a parameter

const (λx : exp. app (E1 x) (E2 x))
= and (const (λx : exp. E1 x)) (const (λx : exp. E2 x))

const (λx : exp. lam (λy : exp. E x y))
= const (λx : exp. E x y)

for some new parameter y : exp
const (λx : exp. x) = false

The representation of const has type 〈exp → exp〉 ⇒ 〈bool〉.

const : 〈exp → exp〉 ⇒ 〈bool〉
= ∇y : exp. 〈λx : exp. y〉 7→ 〈true〉
| εe1 : exp → exp.

εe2 : exp → exp.
〈λx : exp. app (e1 x) (e2 x)〉 7→ and · (const · 〈λx : exp. e1 x〉) · (const · 〈λx : exp. e2 x〉)

| εe : exp → exp → exp.
〈λx : exp. lam λy : exp. e x y〉 7→ εb : bool.

νy : exp.
case const · 〈λx : exp. e x y〉 of 〈b〉 7→ pop 〈b〉

| 〈λx : exp. x〉 7→ 〈false〉

�

In example 14 we demonstrated a function that tests whether a given expres-
sion in the untyped λ-calculus starts with a β redex. In the next example, we
use examples 13 and 15 to help write a function that tests whether a given ex-
pression in the untyped λ-calculus starts with an η-redex. To remind the reader,
η-reduction is defined as follows.

η-reduction: λx. (E x) E where x does not occur free in E

λx. (E x) is called an η-redex if x is not free in E.

Example 16 (η-redex test). The function that determines if a given expression is
an η-redex is more difficult to define than the function that determines if a given
expression is a β-redex. This is because the function must take into account not
only the structure of the given expression, but a side condition as well. This can
be accomplished using the functions idtest (from Example 13) and const (from
Example 15) defined above.

15

etatest F = case F of
(lam E) 7→ case E of λx : exp. (lam λy : exp. E′ x y) 7→ false

| λx : exp. (app (E′
1 x) (E′

2 x)) 7→
and (const E′

1) (idtest E′
2)

| λx : exp. x 7→ false
| (app E1 E2) 7→ false

Its representation in our calculus is:

etatest : 〈exp〉 ⇒ 〈bool〉
= εe : exp → exp.

〈lam e〉 7→ case 〈e〉 of εe′ : exp → exp → exp.
〈λx : exp. lam λy : exp. e′ x y〉 7→ 〈false〉

| εe′1 : exp → exp.
εe′2 : exp → exp.
〈λx : exp. app (e′1 x) (e′2 x)〉 7→ and · (const · 〈e′1〉) · (idtest · 〈e′2〉)

| 〈λx : exp. x〉 7→ 〈false〉
| εe1 : exp.

εe2 : exp.
〈app e1 e2〉 7→ 〈false〉

�

Example 17 (Translation to de Bruijn representation). Untyped λ-
expressions in de Bruijn form d ::= n | lam d | d1 @ d2 are represented as
canonical objects of type db over the signature which includes the natural num-
bers and the following declarations.

pnq = var pnq var : nat → db
plam dq = lm pdq lm : db → db
pd1 @ d2q = ap pd1q pd2q ap : db → db → db

A translation from the higher-order representation to de Bruijn form has type
〈exp〉 ⇒ 〈db〉 and is represented formally in terms of an auxiliary function trans
of type 〈exp〉 ⇒ 〈nat〉 ⇒ 〈db〉, which keeps track of the number of lambda-
abstractions the current subexpression is under. These functions can be written
informally as follows:

trans (x m) n = var (minus m n)
where x : nat → exp is a parameter

trans (lam e) n = lm (trans (e (x n))(s n)
for some new parameter x : nat → exp)

trans (app e1 e2) n = ap (trans e1n) (trans e2 n)
dbtrans e = trans e z

16

The translation function is expressed in the ∇-calculus as follows.

trans : 〈exp〉 ⇒ 〈nat〉 ⇒ 〈db〉
= ∇x : nat → exp. εn : nat.

〈x n〉 7→ εm : nat.
〈m〉 7→ 〈var〉 ◦ (minus · 〈m〉 · 〈n〉)

| εe1 : exp.
εe2 : exp.
〈app e1 e2〉 7→ εn : nat.
〈n〉 7→ 〈ap〉 ◦ (trans · 〈e1〉 · 〈n〉) ◦ (trans · 〈e2〉 · 〈n〉)

| εe : exp → exp.
〈lam e〉 7→ εn : nat.
〈n〉 7→ εd : db.

νx : nat → exp.
case trans · 〈e (x n)〉 · 〈s n〉 of 〈d〉 7→ pop 〈d〉

In order to define dbtrans we can simply instantiate trans’s second argument
with z to obtain a function of type 〈exp〉 ⇒ 〈db〉.

dbtrans : 〈exp〉 ⇒ 〈db〉
= εx : exp.

〈x〉 7→ trans · 〈x〉 · 〈z〉

�

4 Semantics

The operators ν and pop have guided the design of the static and operational
semantics of the ∇-calculus. To reiterate, once a parameter is introduced by a
ν, all other declarations that take place within its scope may depend on the new
parameter. As we will see, pop statically ensures that an expression is valid out-
side ν’s scope by discarding all declarations since the last parameter introduction
in a manner reminiscent of popping elements off a stack. The ambient environ-
ment is therefore formally captured in form of scope stacks. A scope consists of
two parts: The context Γ (defined in Section 2), which summarizes all object-
level declarations x : A, and the context Φ, which summarizes all meta-level
declarations u ∈ τ .

Meta Contexts: Φ ::= · | Φ, u ∈ τ

Scope Stacks: Ω ::= · | Ω, (Γ ;Φ)

We refer to the top and second-from-top elements of Ω as the current and
previous scopes, respectively. The scope stack Ω grows monotonically, which
means that the current scope always extends the previous scope.

17

Γ ` A : type
wfinj

Ω, (Γ ; Φ) ` 〈A〉 : type

Ω ` τ : type Ω ` σ : type
wffun

Ω ` τ ⇒ σ : type

Ω ` τ : type Ω ` σ : type
wfprod

Ω ` τ ? σ : type

Ω ` τ : type
wfbox

Ω, (Γ ; Φ) ` �τ : type

Fig. 2. Well-formed types in the ∇-calculus

4.1 Valid types

Validity of a type depends not only on its formation, but on the scope stack it
is postulated to exist in. For example, 〈A〉 is a valid type in any scope because
every type A in the simply-typed λ-calculus is well-formed. However, the type
�τ is only well-formed in a scope when τ is valid in the preceding scope. For
example, in ·, (·; ·), �τ is not a valid type. We have summarized the rules defining
the judgment Ω ` τ : type in Figure 2.

4.2 Static semantics

We define the typing judgment Ω ` e ∈ τ by the rules depicted in Figure 3.
Many of the rules are self-explanatory. All rules except for tpnew and tppop touch
only the current scope. For example, tpvar relates variables and types, whereas
tpinj enforces that only representation-level objects valid in the current scope
can be lifted to the computation-level. For functions, the pattern must be of the
argument type, whereas the body be of the result type. Variables that may occur
in patterns must be declared b y a preceding εx : A or εu ∈ τ declaration, which
will be recorded in the current scope by tptheobj and tpthemeta, respectively.
The rules tpapp, tpalt, and tpfix are standard. The tppop rule is the introduction
rule for �τ . The expression pop e is valid if e is valid in the previous scope.
The corresponding elimination rule is tpnew. The expression νx : A. e has type
τ when e is of type �τ in the properly extended scope stack.

4.3 Operational Semantics

Computation level function application in the ∇-calculus is more demanding
than the usual substitution of an argument for a free variable. It relies on the
proper instantiation of all ε- and ∇-bound variables that occur in the function’s
pattern. Perhaps not surprisingly, the behavior of our calculus depends on when
these instantiations are committed. For example,

(εf ∈ 〈nat〉 → 〈nat〉. f 7→ plus · (f · 〈z〉) · (f · 〈s z〉)) · (εn : nat. 〈n〉 7→ 〈n〉)

may either return s z under a call-by-name semantics, or no solution at all under
a call-by-value semantics because n : nat may be instantiated either by z or

18

Φ(u) = τ
tpvar

Ω, (Γ ; Φ) ` u ∈ τ

Γ ` M : A
tpinj

Ω, (Γ ; Φ) ` 〈M〉 ∈ 〈A〉

Ω ` e1 ∈ τ Ω ` e2 ∈ σ
tpfun

Ω ` e1 7→τ e2 ∈ τ → σ

Ω, (Γ ; Φ, u ∈ τ) ` e ∈ τ
tpfix

Ω, (Γ ; Φ) ` fix u ∈ τ . e ∈ τ

Ω, (Γ, x : A; Φ) ` e ∈ τ
tptheobj

Ω, (Γ ; Φ) ` εx : A. e ∈ τ

Ω, (Γ ; Φ, u ∈ τ) ` e ∈ τ
tpthemeta

Ω, (Γ ; Φ) ` εu ∈ τ . e ∈ τ

Ω ` e1 ∈ σ → τ Ω ` e2 ∈ σ
tpapp

Ω ` e1 · e2 ∈ τ

Ω ` e1 ∈ τ Ω ` e2 ∈ τ
tpalt

Ω ` (e1 | e2) ∈ τ

Ω ` e1 ∈ τ1 Ω ` e2 ∈ τ2
tppair

Ω ` (e1, e2) ∈ τ1 ? τ2

Ω ` e ∈ τ1 ? τ2
tpfst

Ω ` fst e ∈ τ1

Ω ` e ∈ τ1 ? τ2
tpsnd

Ω ` snd e ∈ τ2

Ω ` e ∈ τ
tppop

Ω, (Γ ; Φ) ` pop e ∈ �τ

Ω, (Γ ; Φ), (Γ, x : A; Φ) ` e ∈ �τ
tpnew

Ω, (Γ ; Φ) ` νx : A. e ∈ τ

Ω, (Γ, x : A; Φ) ` e ∈ τ
tpnabla

Ω, (Γ ; Φ) ` ∇x : A. e ∈ τ

Ω ` σ → τ : type
tpempty

Ω ` empty ∈ σ → τ

Fig. 3. The static semantics of the ∇-calculus

s z but not both. Consequently, our calculus adopts a call-by-name evaluation
strategy. We can define computational-level λ-abstraction “lambda u ∈ τ. e” as
syntactic sugar for (εu ∈ τ . u 7→ e) and “let u ∈ τ = e1 in e2 end” as syntactic
sugar for ((εu ∈ τ . u 7→ e2) e1).

Definition 2 (Values). The set of values of the ∇-calculus is defined as follows.

Values: v ::= 〈M〉 | (e1, e2) | pop e | e1 7→τ e2

The operational semantics of the ∇-calculus combines a system of reduction
rules of the form Ω ` e → e′ with an equivalence relation on meta-level expres-
sions Ω ` e ≡ e′ ∈ τ . We give the reduction rules in Figure 4 and the equality
rules in Figure 5. During runtime, all ε-quantified variables are instantiated with
concrete objects, so evaluation always takes place in a scope stack of the form
Ω ::= · | Ω, (Γ ; ·), where Γ contains only ν-quantified parameter declarations.

The rules in Figure 4 are organized into three parts. The top part shows the
essential reduction rules redbeta and rednupop. The rule rednupop states that it
is unnecessary to traverse into a new scope to return an expression that is valid
in the previous scope.

Among the second block of rules, redalt1 and redalt2 express a non-deterministic
choice in the control flow. Similarly, redsome and redsomeM express a non-
deterministic choice of instantiations. The abbreviations f/u and M/x stand for

19

Ω ` e1 ≡ e′
1 ∈ τ

redbeta
Ω ` (e1 7→τ e2) · e′

1 → e2

rednupop
Ω ` νx : A. pop e → e

. .

redalt1
Ω ` (e1 | e2) → e1

redalt2
Ω ` (e1 | e2) → e2

Γ ` M : A
redsome

Ω, (Γ ; ·) ` εx : A. e → [M/x]e

Ω ` f ∈ τ
redsomeM

Ω ` εu ∈ τ . e → [f/u]e

Γ (y) = A
rednabla

Ω, (Γ ; ·) ` ∇x : A. e → [y/x]e
redfix

Ω ` fix u ∈ τ . e → [fix u ∈ τ . e/u]e

. .

Ω ` e1 → e′
1

redfun
Ω ` e1 · e2 → e′

1 · e2

Ω, (Γ ; ·), (Γ, x : A; ·) ` e → e′

rednew
Ω, (Γ ; ·) ` νx : A. e → νx : A. e′

Fig. 4. Small-step semantics (Reductions)

single-point substitutions that can easily be expanded into simultaneous substi-
tutions given in Definition 3. During evaluation, the current scope only contains
parameters introduced by ν, and thus rednabla expresses a non-deterministic
choice of parameters. Finally, redfix implements the unrolling of the recursion
operator.

The bottom two rules are necessary to give us a congruence closure for re-
ductions on ∇-expressions. Because the ∇-calculus is call-by-name, we do not
evaluate e2 in the rule redfun. Finally, rednew reduces under the ν after appro-
priately copying and extending the current scope.

Thus, equivalence on functions is decided only by syntactic equality, as shown
by rule eqfun in Figure 5. For all other types, we give three rules: the rule ending
in V refers to the case where the left and right hand side are already values, while
the rules ending in L or R are used when further reduction steps are required on
the left or right side of the equality, respectively.

5 Meta Theory

We study the meta-theory of the∇-calculus culminating in the type-preservation
theorem, which entails that parameters cannot escape their scope.

Substituting for ε and ∇-bound variables is essential for defining the opera-
tional meaning of our expressions. In this section we elaborate on representation-
level and computation-level substitutions, as well as substitution stacks, which
are defined on scope stacks.

20

Γ ` M ≡ N : A
eqinjV

Ω, (Γ ; ·) ` 〈M〉 ≡ 〈N〉 ∈ 〈A〉

Ω ` e1 → e′
1 Ω ` e′

1 ≡ e2 ∈ 〈A〉
eqinjL

Ω ` e1 ≡ e2 ∈ 〈A〉

Ω ` e2 → e′
2 Ω ` e1 ≡ e′

2 ∈ 〈A〉
eqinjR

Ω ` e1 ≡ e2 ∈ 〈A〉

Ω ` e1 ≡ e′
1 ∈ τ1 Ω ` e2 ≡ e′

2 ∈ τ2
eqpairV

Ω ` (e1, e2) ≡ (e′
1, e

′
2) ∈ τ1 ? τ2

Ω ` e1 → e′
1 Ω ` e′

1 ≡ e2 ∈ τ1 ? τ2
eqpairL

Ω ` e1 ≡ e2 ∈ τ1 ? τ2

Ω ` e2 → e′
2 Ω ` e1 ≡ e′

2 ∈ τ1 ? τ2
eqpairR

Ω ` e1 ≡ e2 ∈ τ1 ? τ2

Ω ` e1 ≡ e2 ∈ τ
eqpopV

Ω, (Γ ; ·) ` pop e1 ≡ pop e2 ∈ �τ

Ω ` e1 → e′
1 Ω ` e′

1 ≡ e2 ∈ �τ
eqpopL

Ω ` e1 ≡ e2 ∈ �τ

Ω ` e2 → e′
2 Ω ` e1 ≡ e′

2 ∈ �τ
eqpopR

Ω ` e1 ≡ e2 ∈ �τ

eqfun
Ω ` e ≡ e ∈ τ1 ⇒ τ2

Fig. 5. Small-step semantics (Equality)

Definition 3 (Substitutions).

Representation-Level Substitutions: γ ::= · | γ, M/x
Computation-Level Substitutions: ϕ ::= · | ϕ, f/u
Substitution Stacks: ω ::= · | ω, (γ;ϕ)

Representation-level substitutions are conventional, whereas computation-level
substitutions and substitution stacks require some explanation. Their definitions
can be motivated by the same intuition that explains computation-level contexts
and scope stacks. Computation-level contexts are responsible only for identify-
ing the types of free computation-level variables, whereas the responsibility for
typing more complex terms (e.g. those involving pop and ν) falls upon scope
stacks. Similarly, computation-level substitutions are responsible only for acting
upon free computation-level variables, whereas the responsibility for performing
substitutions on more complex terms falls upon substitution stacks. Note that,
despite the fact that meta-level substitutions only act on meta-level variables,
such an action can result in an arbitrary meta-level term. This term’s valid-
ity can only be determined by a full scope stack. Hence, the co-domain of a
computation-level substitution is a scope stack, which is reflected in Figure 6.

Figure 6 defines the typing judgments for substitutions: Γ ` γ : Γ ′, Ω ` φ : Φ,
and Ω ` ω ∈ Ω′. The domains of the substitutions are Γ ′, Φ, and Ω′, respec-

21

tpEObjS
Γ ` · : ·

Γ ` M : A Γ ` γ : Γ ′

tpIObS
Γ ` (γ, M/x) : (Γ ′, x : A)

. .

tpEMetaS
Ω ` · : ·

Ω ` f ∈ τ Ω ` ϕ : Φ
tpIMetaS

Ω ` (ϕ, f/u) : (Φ, u ∈ τ)

. .

tpEStackS
Ω ` · : ·

Γ ` γ : Γ ′ Ω, (Γ ; Φ) ` ϕ : Φ′ Ω ` ω : Ω′

tpIStackS
Ω, (Γ ; Φ) ` ω, (γ; ϕ) : Ω′, (Γ ′, Φ′)

Fig. 6. The static semantics of substitutions

tively, and the codomains of the substitutions are Γ , Ω, and Ω, respectively. The
definition of substitution application is given in Figure 7.

[γ, M/x]x = M
[γ, M/x]y = [γ]y

[γ]c = c
[γ](N1 N2) = ([γ]N1) ([γ]N2)

[γ](λx : A. N) = λx : A. [γ, x/x]N

[ϕ, e/u]u = e
[ϕ, e/u]v = [ϕ]v

[ω, (γ; ϕ)]u = [ϕ]u
[ω, (γ; ϕ)]〈N〉 = 〈[γ]N〉

[ω, (γ; ϕ)](pop e) = pop [ω]e
[ω](e1 7→τ e2) = ([ω]e1) 7→τ ([ω]e2)

[ω](e1 · e2) = ([ω]e1) · ([ω]e2)
[ω](e1 | e2) = ([ω]e1 | [ω]e2)
[ω](e1, e2) = ([ω]e1, [ω]e2)
[ω](fst e) = fst [ω]e

[ω](snd e) = snd [ω]e
[ω](empty) = empty

[ω, (γ; ϕ)](fix u ∈ τ . e) = fix u ∈ τ . [ω, (γ; ϕ, u′/u)]e
[ω, (γ; ϕ)](εx : A. e) = εx : A. [ω, (γ, x′/x; ϕ)]e
[ω, (γ; ϕ)](εu ∈ τ . e) = εu ∈ τ . [ω, (γ; ϕ, u′/u)]e
[ω, (γ; ϕ)](∇x : A. e) = ∇x : A. [ω, (γ, x′/x; ϕ)]e
[ω, (γ; ϕ)](νx : A. e) = νx : A. [ω, (γ; ϕ), (γ, x′/x; ϕ)]e

for fresh u′ and x′ in the above

Fig. 7. Substitution Application

Recall that the rules defining the operational semantics summarized in Fig-
ures 4 and 5 used an intuitive notion of single point substitutions. They can be
seen as shorthands for notion of substitutions, and be directly expanded by the
use of identity substitutions.

22

Definition 4 (Identity Substitutions).
Representation Level Computation Level Scope Stacks

id· = ·
idΓ,x:A = idΓ , x/x

id· = ·
idΦ,u∈τ = idΦ, u/u

id· = ·
idΩ,(Γ ;Φ) = idΩ , (idΓ ; idΦ)

Definition 5 (Single Point Substitutions).

Representation level: If Γ, x : A ` M : B and Γ ` N : A we typically
use the abbreviation [N/x]M to stand for the term [idΓ , N/x]M ; note that
Γ ` (idΓ , N/x) : (Γ, x : A).

Computation level: If Ω; (Γ, x : A;Φ) ` e : τ and Γ ` N : A we typically use
the abbreviation [N/x]e to stand for the term [idΩ , (idΓ , N/x; idΦ)]e; note
that Ω, (Γ ;Φ) ` idΩ , (idΓ , N/x; idΦ) ∈ Ω; (Γ, x : A;Φ).
Similarly, if Ω; (Γ ;Φ, u ∈ τ) ` e : τ ′ and Ω; (Γ ;Φ) ` f : τ we typically use
the abbreviation [f/u]e to stand for the term ` [idΩ , (idΓ ; idΦ, f/u)]e; note
that Ω, (Γ ;Φ) ` idΩ , (idΓ ; idΦ, f/u) ∈ Ω, (Γ, x : A;Φ, u ∈ τ).

We will find the usual object-level substitution lemma useful later on.

Lemma 1 (Object-Level Substitution).

1. If Γ ` M : A and Γ ′ ` γ : Γ then Γ ′ ` [γ]M : A

2. If Γ ` A : type and Γ ′ ` γ : Γ then Γ ′ ` A : type

Proof. The first part is proven by induction on the structure of Γ ` M : A, where
the case for variables is proven by induction on the structure of Γ ′ ` γ : Γ . The
second part is proven by straightforward induction on the structure of Γ ` A :
type (note that, because we don’t have dependencies, this part is trivially true,
since the only thing that influences the validity of a type A is the signature Σ,
which is presumed to be fixed). �

The following lemma is useful for proving several of the lemmas in this sec-
tion.

Lemma 2 (The Empty Scope Stack is Useless). If Ω ` e ∈ τ then Ω =
Ω′, (Γ ;Φ).

Proof. By straightforward induction over the structure of Ω ` e ∈ τ

We find it useful to define ordering relations on contexts and on scope stacks:

23

Definition 6 (Size Orderings). We define < and ≤ for Γ,Φ and Ω as follows:
where Γ < Γ ′ and Φ ≤ Φ′ are defined by:

Γ < Γ, x : a

Γ < Γ ′

Γ < Γ ′, x : A

Γ < Γ ′

Γ, x : A < Γ ′, x : A

Γ ≤ Γ

Γ ≤ Γ ′

Γ ≤ Γ ′, x : A

Γ ≤ Γ ′

Γ, x : A ≤ Γ ′, x : A

Φ ≤ Φ

Φ ≤ Φ′

Φ ≤ Φ′, u ∈ τ

Φ ≤ Φ′

Φ, x : A ≤ Φ′, x : A

· ≤ Ω

Ω ≤ Ω′ Γ ≤ Γ ′ Φ ≤ Φ′

Ω, (Γ ;Φ) ≤ Ω′, (Γ ′;Φ′)

Note that, for all of the above syntactic categories, < and ≤ are both transitive,
and Γ < Γ ′ implies Γ ≤ Γ ′ (by straightforward inductions).

Although most expressions can be considered well-typed in any number of
scope stacks (e.g. if Γ ` M : A then Ω, (Γ ;Φ) ` 〈M〉 ∈ 〈A〉 for any Ω and any Φ),
intuitively we only care about scope stacks that occur during the type-checking
of a closed expression in a scope stack which consists of single world on top of the
empty stack. Such stacks are characterized by our definition of well-formedness.

Definition 7 (Well-Formed Scope Stacks). We say that a context stack
Ω is well-formed if the proposition ` Ω ok can be proved using the following
judgments:

okempty
` · ok

okinit
` ·, (Γ ;Φ) ok

` Ω, (Γ ;Φ) ok Γ < Γ ′ Φ ≤ Φ′

oknew
` Ω, (Γ ;Φ), (Γ ′;Φ′) ok

At first glance, it may seem strange to consider · to be an ok context-stack,
since we’ve already proven that the scope stack alone cannot be used to suc-
cessfully typecheck any ∇-calculus term. However, the following lemma, which
is useful for proving both substitution and subject reduction, would not be true
were this not the case.

Lemma 3. If ` Ω, (Γ ;Φ) ok then ` Ω ok

Proof. By cases.

The following can be thought of as a weakening lemma for the ok judgment.

Lemma 4. If ` Ω, (Γ ;Φ) ok and Γ ≤ Γ ′ and Φ ≤ Φ′ then Ω, (Γ ′;Φ′) ok and
Ω, (Γ,Φ) ≤ Ω, (Γ ′;Φ′)

Proof. By cases on ` Ω, (Γ ;Φ) ok, using transitivity.

24

We find it useful to define a general purpose weakening lemma for terms and
substitutions on all levels.

Lemma 5 (Weakening).

1. If Γ ` M : A and Γ ≤ Γ ′ then Γ ′ ` M : A.
2. If Φ(u) = τ and Φ ≤ Φ′ then Φ′(u) = τ .
3. If Ω ` e ∈ τ and Ω ≤ Ω′ then Ω′ ` e ∈ τ .
4. If Γ ` γ : Γ ′ and Γ ≤ Γ ′′ then Γ ′′ ` γ : Γ ′.
5. If Ω ` ϕ ∈ Φ and Ω ≤ Ω′ then Ω′ ` ϕ ∈ Φ.
6. If Ω ` ω : Ω′ and Ω ≤ Ω′′ then Ω′′ ` ω : Ω.

Proof. 1 by straightforward induction on the given typing derivations and 2
by straightforward induction on the definition of Φ ≤ Φ′. 3 by straightforward
induction on the given typing derivation, using 1 and 2. 4 by straightforward
induction on the given typing derivation, using 1. 5 by straightforward induction
on the given typing derivation, using 3. 6 can be proven directly, using 4 and 5.
It is worth noting that the proof of part 3 is the only place we use any of the
size ordering rules in the rightmost column.

The following lemma is useful for allowing us to apply weakening.

Lemma 6. If ` Ω ok and ` Ω, (Γ ;Φ) ok then Ω ≤ Ω, (Γ ;Φ) .

Proof. By straightforward induction over the structure of ` Ω ok.

The following lemma is used in proving the meta-variable case for the general
substitution lemma which follows.

Lemma 7 (Meta-Variable Subs.). If Φ(u) = τ and Ω ` ϕ : Φ then Ω `
[ϕ]u ∈ τ .

Proof. By induction on the structure of Ω ` ϕ : Φ. Note that we consider two
separate instances of tpIMetaS: when the top variable being substituted is u and
when the top variable being substituted is distinct from u.

Case:

D = tpEMetaS
Ω ` · : ·

·(u) 6= τ for any u and for any τ , and thus the theorem is trivially true.

D =
Ω ` f ∈ τ Ω ` ϕ : Φ

tpIMetaS
Ω ` (ϕ, f/u) : (Φ, u ∈ τ)

Ω ` f ∈ τ by this case
(Φ, u ∈ τ)(u) = τ by definition
[ϕ, f/u]u = f by def of subs
Ω ` [ϕ, f/u]u ∈ τ by the above.

25

D =
Ω ` f ∈ σ

D1

Ω ` ϕ : Φ
tpIMetaS

Ω ` (ϕ, f/v) : (Φ, v ∈ σ)

(Φ, v ∈ σ)(u) = Φ(u) by definition
[ϕ, f/v]u = [ϕ]u by def of subs
If Φ(u) = τ then Ω ` [ϕ]u ∈ τ by the IH on D1

If (Φ, v ∈ σ)(u) = τ then Ω ` [ϕ, f/v]u ∈ τ
by the above

The following is the key lemma of this section.

Lemma 8 (Substitution).

1. If Ω ` e ∈ τ , Ω ok, Ω′ ok and Ω′ ` ω ∈ Ω, then Ω′ ` [ω]e ∈ τ
2. If Ω ` τ : type , Ω ok, Ω′ ok and Ω′ ` ω ∈ Ω, then Ω′ ` τ : type

Proof. By induction on the structure of Ω ` e ∈ τ .
Case:

D =
Φ(u) = τ

tpvar
Ω, (Γ ;Φ) ` u ∈ τ

` Ω, (Γ ;Φ) ok
` Ω′ ok
Ω′ ` ω : Ω, (Γ,Φ) given
ω = ω′, (γ, ϕ)
Ω′ ` ϕ : Φ by inversion on the above
Φ(u) = τ by this case
Ω′ ` [ϕ]u ∈ τ by lemma 7
[ω′, (γ;ϕ)]u = [ϕ]u by definition
Ω′ ` [ω]u ∈ τ by the above

Case:

D =
Γ ` M : A

tpinj
Ω, (Γ ;Φ) ` 〈M〉 ∈ 〈A〉

` Ω, (Γ ;Φ) ok
` Ω′ ok
Ω′ ` ω : Ω, (Γ,Φ) given
ω = ω′, (γ, ϕ)
Ω′ = Ω′′, (Γ ′, Φ′)
Γ ′ ` γ : Γ by inversion on the above
[ω′, (γ;ϕ)]M = [γ]M by def of subs
Γ ′ ` [γ]M : A by object substitution
Ω′′, (Γ ′, Φ) ` 〈[γ]M〉 : 〈A〉 by rule
Ω′ ` [ω]〈M〉 : 〈A〉 by the above

26

Case:

D =

D1

Ω ` e1 ∈ τ1

D2

Ω ` e2 ∈ τ2
tppair

Ω ` (e1, e2) ∈ τ1 ? τ2

` Ω ok
` Ω′ ok
Ω′ ` ω : Ω given
Ω′ ` [ω]e1 ∈ τ1 by the IH on D1

Ω′ ` [ω]e2 ∈ τ2 by the IH on D2

Ω′ ` ([ω]e1, [ω]e2) ∈ τ1 ? τ2 by rule
Ω′ ` [ω](e1, e2) ∈ τ1 ? τ2 by def of subs

Case:

D1 =

D1

Ω ` e ∈ τ1 ? τ2
tpfst

Ω ` fst e ∈ τ1

` Ω ok
` Ω′ ok
Ω′ ` ω : Ω given
Ω′ ` [ω]e ∈ τ1 ? τ2 by the IH on D1

Ω′ ` fst [ω]e ∈ τ1 by rule
Ω′ ` [ω]fst e ∈ τ by def of subs

Case:

D =

D1

Ω ` e ∈ τ1 ? τ2
tpsnd

Ω ` snd e ∈ τ2

See tpfst
Case:

D =

D1

Ω ` e ∈ τ
tppop

Ω, (Γ ;Φ) ` pop e ∈ �τ

` Ω, (Γ ;Φ) ok
` Ω′ ok
Ω′ ` ω : Ω, (Γ ;Φ) given
ω = ω′, (γ, ϕ)
Ω′ = Ω′′, (Γ ′, Φ′)
Ω′′ ` ω′ : Ω by inversion on the above
` Ω ok by lemma 3

27

` Ω′′ ok by lemma 3
Ω′′ ` [ω′]e ∈ τ by the IH on D1

Ω′ ` pop [ω′]e ∈ τ by rule
Ω′ ` [ω]pop e ∈ τ by def of subs

Case:

D =
Ω ` e1 ∈ τ Ω ` e2 ∈ σ

tpfun
Ω ` e1 7→τ e2 ∈ τ → σ

See tppair
Case:

D =

D1

Ω ` e1 ∈ σ → τ
D2

Ω ` e2 ∈ σ
tpapp

Ω ` e1 · e2 ∈ τ

See tppair
Case:

D =

D1

Ω ` e1 ∈ τ
D2

Ω ` e2 ∈ τ
tpalt

Ω ` (e1 | e2) ∈ τ

See tppair
Case:

D =

D1

Ω, (Γ ;Φ, u ∈ τ) ` e ∈ τ
tpfix

Ω, (Γ ;Φ) ` fix u ∈ τ . e ∈ τ

` Ω, (Γ ;Φ) ok
` Ω′ ok
Ω′ ` ω : Ω, (Γ ;Φ) given
ω = ω′, (γ, ϕ)
Ω′ = Ω′′, (Γ ′;Φ′)
Γ ′ ` γ : Γ
Ω′′, (Γ ′;Φ′) ` ϕ : Φ
Ω′′ ` ω′ : Ω by inversion on the above
Γ ′ ≤ Γ ′ and Φ′ ≤ Φ′, u ∈ τ by definition
` Ω, (Γ ;Φ, u ∈ τ) ok by lemma 4
Γ ′ ≤ Γ ′ and Φ′ ≤ Φ′, u′ ∈ τ by definition
` Ω′′, (Γ ′;Φ′, u′ ∈ τ) ok
Ω′′, (Γ ′;Φ′) ≤ Ω′′, (Γ ′;Φ′, u ∈ τ) by lemma 4
Ω′′, (Γ ′;Φ′, u′ ∈ τ) ` u′ ∈ τ by rule
Ω′′, (Γ ′;Φ′, u′ ∈ τ) ` ϕ ∈ Φ by weakening
Ω′′, (Γ ′;Φ′, u′ ∈ τ) ` (ϕ, u′/u) ∈ (Φ, u ∈ τ) by rule
Ω′′, (Γ ′;Φ′, u′ ∈ τ) ` ω′, (γ;ϕ, u′/u) ∈ Ω, (Γ ;Φ, u ∈ τ) by rule

28

Ω′′, (Γ ′;Φ′, u′ ∈ τ) ` [ω′, (γ;ϕ, u′/u)]e ∈ τ by the IH on D1

Ω′′, (Γ ′;Φ′) ` fix u ∈ τ . ([ω′, (γ;ϕ, u′/u)]e) ∈ τ by rule
Ω′′, (Γ ′;Φ′) ` [ω′, (γ;ϕ)](fix u ∈ τ . e ∈ τ) by def of subs
Ω′ ` [ω](fix u ∈ τ . e ∈ τ) by equality

Case:

D =

D1

Ω, (Γ, x : A;Φ) ` e ∈ τ
tptheobj

Ω, (Γ ;Φ) ` εx : A. e ∈ τ

` Ω, (Γ ;Φ) ok
` Ω′ ok
Ω′ ` ω : Ω, (Γ ;Φ) given
ω = ω′, (γ, ϕ)
Ω′ = Ω′′, (Γ ′;Φ′)
Γ ′ ` γ : Γ
Ω′′, (Γ ′;Φ′) ` ϕ : Φ
Ω′′ ` ω′ : Ω by inversion on the above
Γ ≤ Γ, x : A and Φ ≤ Φ by definition
` Ω, (Γ, x : A;Φ) ok by lemma 4
Γ ′ ≤ Γ ′, x′ : A and Φ′ ≤ Φ′ by definition
` Ω′, (Γ ′, x′ : A;Φ′) ok
Ω′, (Γ ′;Φ′) ≤ Ω′, (Γ ′, x′ : A;Φ′) by lemma 4
Γ ′, x′ : A ` γ : Γ by weakening
Γ ′, x′ : A ` x′ : A by rule
Γ ′, x′ : A ` (γ, x′/x) : (Γ, x : A) by rule
Ω′′, (Γ ′, x′ : A;Φ′) ` ϕ : Φ by weakening
Ω′′, (Γ ′, x′ : A;Φ′) ` ω′, (γ, x′/x;ϕ) ∈ Ω, (Γ, x : A;Φ) by rule
Ω′′, (Γ ′, x′ : A;Φ′) ` [ω′, (γ, x′/x;ϕ)]e ∈ τ by the IH on D1

Ω′′, (Γ ′;Φ′) ` εx : A. ([ω′, (γ, x′/x;ϕ)]e) ∈ τ by the IH on D1

Ω′′, (Γ ′;Φ′) ` [ω′, (γ;ϕ)](εx : A. e) ∈ τ by def of subs
Ω′ ` [ω](εx : A. e) ∈ τ by equality

Case:

D =

D1

Ω, (Γ ;Φ, u ∈ τ) ` e ∈ τ
tpthemeta

Ω, (Γ ;Φ) ` εu ∈ τ . e ∈ τ

See tpfix
Case:

D =

D1

Ω, (Γ ;Φ), (Γ, x : A;Φ) ` e ∈ �τ
tpnew

Ω, (Γ ;Φ) ` νx : A. e ∈ τ

29

` Ω, (Γ ;Φ) ok
` Ω′ ok
Ω′ ` ω : Ω, (Γ ;Φ) given
ω = ω′, (γ, ϕ)
Ω′ = Ω′′, (Γ ′;Φ′)
Γ ′ ` γ : Γ
Ω′′, (Γ ′;Φ′) ` ϕ : Φ
Ω′′ ` ω′ : Ω by inversion on the above
Γ < Γ, x : A and Φ ≤ Φ by rule
` Ω, (Γ ;Φ), (Γ, x : A,Φ) ok by rule
Γ ′ < Γ ′, x′ : A and Φ′ ≤ Φ′ by rule
` Ω′, (Γ ′, x′ : A,Φ′) ok by rule
Ω′ ≤ Ω′, (Γ ′, x′ : A;Φ′) by lemma 6
Ω′, (Γ ′, x′ : A;Φ′) ` ϕ : Φ by weakening
Γ ′, x : A ` x : A by rule
Γ ′, x′ : A ` γ : Γ by weakening
Γ ′, x′ : A ` (γ, x′/x) : Γ, x : A by rule
Ω′, (Γ ′, x′ : A;Φ′) ` ω, (γ, x′/x;ϕ) : Ω, (Γ ;Φ), (Γ, x : A;Φ) by rule
Ω′, (Γ ′, x′ : A;Φ′) ` [ω, (γ, x′/x;ϕ)]e : �τ by the IH on D1

Ω′ ` νx : A. ([ω, (γ, x′/x;ϕ)]e) : τ by rule
Ω′ ` [ω](νx : A. .e) ∈ τ by def of subs

Case:

D =

D1

Ω, (Γ, x : A;Φ) ` e ∈ τ
tpnabla

Ω, (Γ ;Φ) ` ∇x : A. e ∈ τ

See tptheobj

Case:

D =

D1

Ω ` σ → τ : type
tpempty

Ω ` empty ∈ σ → τ

Ω ok
Ω′ ok
Ω ` ω : Ω′ given
Ω′ ` σ → τ : type by the IH on D1

Ω′ ` empty : type by rule

Case:

D =

D1

Γ ` A : type
wfinj

Ω, (Γ ;Φ) ` 〈A〉 : type

30

` Ω, (Γ ;Φ) ok
` Ω′ ok
Ω′ ` ω : Ω, (Γ ;Φ) given
ω = ω′, (γ′;φ′)
Γ ′ ` γ′ : Γ by by inversion on the above
Γ ′ ` A : type by the object substitution lemma (Lemma 1)
Ω′ ` 〈A〉 : type by rule

Case:

D =

D1

Ω ` τ : type
D2

Ω ` σ : type
wffun

Ω ` τ ⇒ σ : type

` Ω ok
` Ω′ ok
Ω′ ` ω : Ω given
Ω′ ` τ : type by the IH on D1

Ω′ ` σ : type by the IH on D2

Ω′ ` τ → σ : type by rule

Case:

D =

D1

Ω ` τ : type
D2

Ω ` σ : type
wfprod

Ω ` τ ? σ : type

See wffun

Case:

D =

D1

Ω ` τ : type
wfbox

Ω, (Γ ;Φ) ` �τ : type

` Ω, (Γ ;Φ) ok
` Ω′ ok
Ω′ ` ω : Ω, (Γ ;Φ) given
Ω′ = Ω′′, (Γ ′;Φ′)
ω = ω′, (Γ ′;Φ′) by inversion on the above
` Ω ok by Lemma 3
` Ω′′ ok by Lemma 3
Ω′ ` τ : type by the IH on D1

Ω′, (Γ ′;Φ′) ` τ : type by rule

We are now ready to prove our theorem.

Theorem 2 (Type Preservation). If ` Ω ok and Ω ` e ∈ τ and Ω ` e → e′

then Ω ` e′ ∈ τ

31

Proof. By induction on the structure of Ω ` e → e′.

Case:

D =

D1

Ω ` e → e′

Ω ` fst e → fst e′

` Ω ok
Ω ` fst e ∈ τ by assumption
Ω ` e ∈ τ ? τ ′ by inversion
Ω ` e′ ∈ τ ? τ ′ by the IH on D1

Ω ` fst e′ ∈ τ by rule

Case:

D =
Ω ` fst (e1, e2) → e1

` Ω ok
Ω ` fst (e1, e2) ∈ τ by assumption
Ω ` (e1, e2) ∈ τ ? τ ′ by inversion
Ω ` e1 ∈ τ ′ by inversion

D =

D1

Ω ` e → e′

Ω ` snd e → snd e′

See the equivalent rule for fst .
Case:

D =
Ω ` snd (e1, e2) → e2

See the equivalent rule for snd .
Case:

D =

D1

Ω ` e1 → e′1

Ω ` e1 · e2 → e′1 · e2

` Ω ok
Ω ` e1 · e2 ∈ τ by assumption
Ω ` e1 ∈ τ ′ ⇒ τ
Ω ` e2 ∈ τ ′ by inversion
Ω ` e′1 ∈ τ ′ ⇒ τ by the IH on D1

Ω ` e′1 · e2 ∈ τ by rule

32

Case:

D =

D1

Ω ` e1 ≡ e′1 ∈ τ ′

Ω ` (e1 7→τ ′ e2) · e′1 → e2

` Ω ok
Ω ` (e1 7→τ ′ e2) · e′1 ∈ τ by assumption
Ω ` (e1 7→τ ′ e2 ∈ τ ′ ⇒ τ by inversion
Ω ` e2 ∈ τ by inversion

Case:

D =
Ω ` (e1 | e2) → ei

` Ω ok
Ω ` (e1 | e2) ∈ τ by assumption
Ω ` ei ∈ τ by inversion

Case:

D =
Ω ` fix u ∈ τ . e → [fix u ∈ τ . e/u]e

` Ω ok
Ω ` (fix u ∈ τ . e) ∈ τ by assumption
Ω = Ω′, (Γ ;Φ) by lemma 2
Ω′, (Γ ;Φ, u ∈ τ) ` e ∈ τ by inversion
Ω ` idΩ , (idΓ ; idφ,fix u ∈ τ . e/u) : Ω′, (Γ ′;Φ, u ∈ τ) by definition 5
Γ ≤ Γ by rule
Φ ≤ Φ by rule
Φ ≤ Φ, u ∈ τ by rule
` Ω′, (Γ ′;Φ, u ∈ τ) ok by lemma 4
Ω ` [fix u ∈ τ . e/u]e : τ by lemma 8

Case:

D =

D1

Γ ` M : A

Ω, (Γ ;Φ) ` εx : A. e → [M/x]e

` Ω, (Γ ;Φ) ok
Ω, (Γ ;Φ) ` εx : A. e ∈ τ by assumption
Ω, (Γ, x : A;Φ) ` e ∈ τ by inversion
Ω, (Γ ;Φ) ` idΩ , (idΓ ,M/x; idΦ) : Ω, (Γ, x : A;Φ) by definition 5
Γ ≤ Γ by rule
Γ ≤ Γ, x : A by rule
Φ ≤ Φ by rule
` Ω, (Γ, x : A;Φ) ok by lemma 4
Ω, (Γ ;Φ) ` [M/x]e ∈ τ by lemma 8

33

Case:

D =

D1

Ω ` f ∈ τ

Ω ` εu ∈ τ . e → [f/u]e

` Ω ok
Ω ` εu ∈ τ . e ∈ τ by assumption
Ω = Ω′, (Γ ;Φ) by lemma 2
Ω′, (Γ ;Φ, u ∈ τ) ` e ∈ τ by inversion
Ω′, (Γ ;Φ) ` idΩ , (idΓ ; idΦ, f/u) : Ω′, (Γ ;Φ, u ∈ τ) by definition 5
Γ ≤ Γ by rule
Φ ≤ Φ by rule
Φ ≤ Φ, u ∈ τ by rule
` Ω′, (Γ ;Φ, u ∈ τ) ok by lemma 4
Ω′, (Γ ;Φ) ` [f/u]e : τ by the big substitution lemma
Ω ` [f/u]e : τ by equality

Case:

D =

D1

Γ ` y : A

Ω, (Γ ;Φ) ` ∇x : A. e → [y/x]e

See the case for εx : A. e

Case:

D =

D1

Ω, (Γ ;Φ), (Γ, x : A;Φ) ` e → e′

Ω, (Γ ;Φ) ` νx : A. e → νx : A. e′

` Ω, (Γ ;Φ) ok
Γ, (Γ ;Φ) ` νx : A. e ∈ τ by assumption
Γ, (Γ ;Φ), (Γ, x : A;Φ) ` e ∈ �τ by inversion
Γ, (Γ ;Φ), (Γ, x : A;Φ) ` e′ ∈ �τ by the IH on D1

Γ, (Γ ;Φ) ` νx : A. e′ ∈ τ by rule

Case:

D =
Ω ` νx : A.pop e → e

` Ω ok
Ω ` νx : A.pop e : τ by assumption
Ω = Ω′, (Γ ;Φ) by lemma 2
Ω′, (Γ ;Φ), (Γ, x : A;Φ) ` pop e ∈ �τ by inversion
Ω, (Γ ;Φ) ` e ∈ τ by inversion

34

The following corollary is useful for proving the scope preservation corollary.

Corollary 1. If ` Ω ok and Ω ` e ∈ τ and Ω ` e →∗ e′ then Ω ` e′ ∈ τ

Proof. By straightforward induction on the structure of Ω ` e →∗ e′ using
Theorem 2

Lemma 9 (Value Inversion). If v is a value then all of the following hold

1. If Ω ` v ∈ 〈A〉 then v = 〈M〉, Ω = Ω′, (Γ ;Φ), and Γ ` M : A.
2. If Ω ` v ∈ τ1 ? τ2 then v = (e1, e2), Ω ` e1 : τ1, and Ω ` e2 : τ2.
3. If Ω ` v ∈ τ1 ⇒ τ2 then v = e1 7→ e2, Ω ` e1 : τ1 and Ω ` e2 : τ2.
4. IfΩ ` v ∈ �τ then v = pop e, Ω = Ω′, (Γ ;Φ), and Ω′ ` e ∈ τ

Proof. By cases on v and the given typing judgments.

As a corollary we obtain the property that parameters cannot escape their
scope.

Corollary 2 (Scope Preservation). If ` Ω, (Γ ; ·) ok, Ω, (Γ ; ·) ` e ∈ �τ ,
Ω, (Γ ; ·) ` e →∗ v and v is a value then v = pop e′ and Ω ` e′ ∈ τ .

Proof. By direct applications of Corollary 1 and Lemma 9.

6 Conclusion

In this paper we have presented the ∇-calculus. We allow for evaluation under
λ-binders, pattern matching against parameters, and programming with higher-
order encodings. The ∇-calculus has been implemented as a stand-alone pro-
gramming language, called Elphin [PS04]. The ∇-calculus solves many prob-
lems associated with programming with higher-order abstract syntax. We allow
for, and can usefully manipulate, datatype declarations whose constructor types
make reference to themselves in negative positions while maintaining a closed
description of the functions.

The ∇-calculus is the result of many years of design, originally inspired by
an extension to ML proposed by Dale Miller [Mil90]. Other influencing works
include pattern-matching calculi as employed in ALF [CNSvS94] or proposed
by Jouannaud and Okada [JO91], the type theory T +

ω [Sch01], and Hofmann’s
work on higher-order abstract syntax [Hof99]. A direct predecessor to the ∇-
calculus is the modal λ-calculus with iterators [SDP01]. We conjecture that any
function written in the modal λ-calculus with iterators can also be expressed in
the ∇-calculus.

Closely related to our work are programming languages with freshness [PG00,GP99],
which provide a built-in α-equivalence relation for first-order encodings but pro-
vide neither βη nor any support for higher-order encodings. Also closely related
to the∇-calculus are meta-programming languages, such as MetaML [TS00,Nan02],
which provide hierarchies of computation levels, but do not single out a particular

35

level for representation. Many other attempts have been made to combine higher-
order encodings and functional programming, in particular Honsell, Miculan,
and Scagnetto’s embedding of the π-calculus in Coq[HMS01], and Momgliano,
Amber, and Crole’s Hybrid system [MAC03].

In future work, we plan to extend the ∇-calculus to a dependently-typed
logical framework, add polymorphism to the computation-level, and study ter-
mination and progression.

Acknowledgments. We would like to thank Henrik Nilsson, Simon Peyton-Jones,
and Valery Trifonov for comments on earlier drafts of this paper.

References

[CNSvS94] Thierry Coquand, Bengt Nordström, Jan M. Smith, and Björn von Sydow.
Type theory and programming. Bulletin of the European Association for
Theoretical Computer Science, 52:203–228, February 1994.

[Coq91] Thierry Coquand. An algorithm for testing conversion in type theory. In
Gérard Huet and Gordon Plotkin, editors, Logical Frameworks, pages 255–
279. Cambridge University Press, 1991.

[DPS97] Joëlle Despeyroux, Frank Pfenning, and Carsten Schürmann. Primitive re-
cursion for higher-order abstract syntax. In R. Hindley, editor, Proceedings
of the Third International Conference on Typed Lambda Calculus and Ap-
plications (TLCA’97), pages 147–163, Nancy, France, April 1997. Springer-
Verlag LNCS. An extended version is available as Technical Report CMU-
CS-96-172, Carnegie Mellon University.

[GP99] Murdoch Gabbay and Andrew Pitts. A new approach to abstract syntax
involving binders. In G. Longo, editor, Proceedings of the 14th Annual Sym-
posium on Logic in Computer Science (LICS’99), pages 214–224, Trento,
Italy, July 1999. IEEE Computer Society Press.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defin-
ing logics. Journal of the Association for Computing Machinery, 40(1):143–
184, January 1993.

[HMS01] Furio Honsell, Marino Miculan, and Ivan Scagnetto. pi-calculus in
(Co)inductive-type theory. Theoretical Computer Science, 253(2):239–285,
2001.

[Hof99] Martin Hofmann. Semantical analysis for higher-order abstract syntax. In
G. Longo, editor, Proceedings of the 14th Annual Symposium on Logic in
Computer Science (LICS’99), pages 204–213, Trento, Italy, July 1999. IEEE
Computer Society Press.

[JO91] Jean-Pierre Jouannaud and Mitsuhiro Okada. A computation model for
executable higher-order algebraic specification languages. In Gilles Kahn,
editor, Proceedings of the 6th Annual Symposium on Logic in Computer
Science, pages 350–361, Amsterdam, The Netherlands, July 1991. IEEE
Computer Society Press.

[MAC03] Alberto Momgliano, Simon Ambler, and Roy Crole. A definitional ap-
proach to primitive recursion over higher order abstract syntax. In Alberto
Momgliano and Marino Miculan, editors, Proceedings of the Merlin Work-
shop, Uppsala, Sweden, June 2003. ACM Press.

36

[Mil90] Dale Miller. An extension to ML to handle bound variables in data struc-
tures: Preliminary report. In Proceedings of the Logical Frameworks BRA
Workshop, Nice, France, May 1990.

[Nan02] Aleksander Nanevski. Meta-programming with names and necessity. In
Cindy Norris and Jr. James B. Fenwick, editors, Proceedings of the Sev-
enth ACM SIGPLAN International Conference on Functional Programming
(ICFP-02), Pittsburgh, PA, October 2002. ACM Press.

[Pfe92] Frank Pfenning. Computation and deduction. Unpublished lecture notes,
277 pp. Revised May 1994, April 1996, May 1992.

[PG00] A. M. Pitts and M. J. Gabbay. A metalanguage for programming with
bound names modulo renaming. In R. Backhouse and J. N. Oliveira, edi-
tors, Mathematics of Program Construction, MPC2000, Proceedings, Ponte
de Lima, Portugal, July 2000, volume 1837 of Lecture Notes in Computer
Science, pages 230–255. Springer-Verlag, Heidelberg, 2000.

[PM93] Christine Paulin-Mohring. Inductive definitions in the system Coq: Rules
and properties. In M. Bezem and J.F. Groote, editors, Proceedings of the
International Conference on Typed Lambda Calculi and Applications, pages
328–345, Utrecht, The Netherlands, March 1993. Springer-Verlag LNCS
664.

[PS04] Adam Poswolsky and Carsten Schürmann. Elphin: Functional programming
with higher-order encodings. Technical report, Yale University, 2004. to
appear.

[Sch01] Carsten Schürmann. Recursion for higher-order encodings. In Laurent
Fribourg, editor, Proceedings of the Conference on Computer Science Logic
(CSL 2001), pages 585–599, Paris, France, August 2001. Springer Verlag
LNCS 2142.

[SDP01] Carsten Schürmann, Joëlle Despeyroux, and Frank Pfenning. Primitive
recursion for higher-order abstract syntax. Theoretical Computer Science,
(266):1–57, 2001. Journal version of [DPS97].

[TS00] Walid Taha and Tim Sheard. MetaML: Multi-stage programming with
explicit annotations. Theoretical Computer Science, 248(1-2), 2000.

37

