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IT University of Copenhagen

Copenhagen, Denmark
carsten@itu.dk

Jeffrey Sarnat
Yale University

New Haven, CT, USA
sarnat@cs.yale.edu

Abstract

Tait’s method (a.k.a. proof by logical relations) is a pow-
erful proof technique frequently used for showing founda-
tional properties of languages based on typed λ-calculi.
Historically, these proofs have been extremely difficult to
formalize in proof assistants with weak meta-logics, such
as Twelf, and yet they are often straightforward in proof as-
sistants with stronger meta-logics. In this paper, we propose
structural logical relations as a technique for conducting
these proofs in systems with limited meta-logical strength
by explicitly representing and reasoning about an auxiliary
logic. In support of our claims, we give a Twelf-checked
proof of the completeness of an algorithm for checking
equality of simply typed λ-terms.

1. Introduction

When formalizing meta-theoretic proofs about formal
systems, one is usually first confronted with choosing a
proof assistant. This decision is usually driven by concerns
regarding the expressive power of the proof assistant, the
trust in its logical foundation, performance, the features of
the tactic language, and the ease with which we can encode
the formal system.

For example, Thomas Hales has chosen HOL
Light [Har96] for his work on the formalization of
Kepler’s conjecture. George Necula has chosen variants of
the LF type theory for his original work on proof-carrying
code [Nec97]. Daniel Lee, Karl Crary, and Bob Harper
have chosen the Twelf system for formalizing the proof
of the soundness of an SML type system [LCH07] and
Georges Gonthier has chosen Coq for his formalized proof
of the four color theorem [Gon05]. The solutions posted to
the POPLmark challenge employ a whole range of different
proof assistants, including Twelf, Coq, Isabelle/HOL,
Matita, Alpha Prolog, and ATS.

∗This research has been funded by the National Science Foundation
under grant CCR-0325808.

The proof theoretic strength of the different systems vary
significantly. Once the proof assistant question is settled
and a proof development has begun, there is often no turn-
ing back. If unforeseen challenges in the formalization of
a meta-theoretic argument arise, one can find oneself in a
situation where one is seemingly stuck. This might suggest
that the best proof assistant is necessarily the most expres-
sive, but such a perspective is too naive with respect to other
considerations that influence the choice of proof assistant.

In this paper we present a technique called structural
logical relations that avails proofs by logical relations to
systems with limited meta-logical strength by explicitly rep-
resenting and reasoning about an auxiliary logic. Proofs by
structural logical relations follow the same line of reasoning
as their informal counterparts. The central idea is to formal-
ize the relevant part of the argument in this auxiliary logic,
which we refer to as the assertion logic. Structural logi-
cal relations are therefore best employed in proof assistants
based on logical frameworks, such as Twelf, that provide
adequate, elegant, and convenient to work with encodings
of proofs in the assertion logic.

We show how to formalize structural logical relations in
practice using the meta-logical framework Twelf. But this
paper is not just about the how, it also highlights some in-
sights into the proof itself. For example, we illustrate that
a proof by logical relations can be viewed as a recipe to re-
duce the provability of a theorem to the normalizability of
proofs in the assertion logic. We present the results in such a
way that the reader interested in the nature of logical proofs,
but not in their formalization, should be able to follow this
paper by ignoring the formalized material.

To best follow the paper, however, it is important that
we distinguish carefully between the logical framework,
in our case LF [HHP93] that serves the formalization of
judgments, the assertion logic that we will encode in LF,
and the meta-logic of Twelf, in which we carry out proofs
by structural logical relations. Our proofs are construc-
tive and executable, laying to rest the common miscon-
ception that the meta-logical framework Twelf is unable
to reason with proofs by logical relations. The FOL∆N

1



system [MM97] has a similar distinction between logical
framework and meta-logic; we suspect that structural logi-
cal relations would be convenient in that setting as well.

This paper is structured as follows: In Section 2 we
define the term structural logical relation and give a sim-
ple yet useful example of an assertion logic, namely min-
imal first-order logic, suitable for reasoning about sim-
ply typed languages. In Section 3, we briefly comment
on the formalization of the technique in the proof assis-
tant Twelf. We give an introductory example of a struc-
tural logical relations proof, namely the weak normaliza-
tion for the simply typed λ-calculus in Section 4 before
we address the goal of this paper, the completeness of
equivalence checking in Section 5. An identifying fea-
ture of our structural logical relations proofs is the cut-
elimination property of the assertion logic. Therefore, we
study the features and implications of cut-elimination of the
assertion logic in Section 6. We conclude with Section 7
where we discuss implications and possible extensions. The
accompanying Twelf source code [SS08] is available at
http://www.twelf.org/slr.

2. Structural Logical Relations

A proof by logical relations (also sometimes referred to
as Tait’s method) relies on an interpretation of types as re-
lations between objects. On paper, these interpretations are
usually formulated in set theory. In the spirit of intuition-
ism, we not only want to know that a certain property holds,
but we would like to be able to produce a constructive wit-
ness of this fact.

Consider the simply typed λ-calculus.

Types τ ::= o | τ1 ⇒ τ2
Expressions e ::= xτ | lam xτ . e | app e1 e2

We refer to a property that is logic independent as a judg-
ment. Examples of judgments J include, for example, e
reduces to a normal form, e weak-head reduces to e′, or e
is βη-equivalent to e′. Given some judgment J(e), a unary
logical relation [[τ ]] can be defined as the smallest set that
satisfies the following two conditions.

e ∈ [[o]] iff J(e)
e ∈ [[τ2 ⇒ τ1]] iff for all e2, if e2 ∈ [[τ2]]

then app e e2 ∈ [[τ1]]

The hallmark characteristic of a logical relation is the def-
inition at function types: functions are related if they map
related arguments to related results. A proof by logical rela-
tions typically proceeds in two stages: first, it is shown that
e ∈ [[τ ]] implies J(e), then it is shown that, for every e of
type τ , e ∈ [[τ ]]. A paper proof for the weak normalization
of the simply typed λ-calculus can be found in [Pfe92]; a

proof using structural logical relations for the same property
is given in Section 4.

Taking a step back, we notice that the logical relation
defined above relies on two things: structural induction on
τ , judgments of the form of J , and connectives “for all”
and “if ... then.” Logical relations are typically formulated
with the understanding that the induction principle, judg-
ments, and connectives live on the same level. The idea of
structural logical relations is to separate these concepts: in-
duction lives on the meta-level, whereas the judgments and
connectives live elsewhere. To this end, we declare a logic,
the assertion logic, that is expressive enough to define both
a logical relation in terms of logical connectives and atomic
formulas P that represent the judgments J in the logic. The
formulas of our assertion logic that we use throughout this
paper are defined by the following.

Formulas F,G ::= P | F ⊃ G | ∀xτ . F
Assumptions ∆ ::= · | ∆, F | ∆, xτ

In the definition of expressions, every variable carries its
own type, which means that we can restrict the universal
quantifier to range over well-typed expressions even if these
contain free variables. We write eτ for an expression e of
type τ and omit the superscript τ whenever it can be easily
inferred.

We define the judgment of derivability in a sequent cal-
culus ∆ ` F by the following rules. If ∆ is ·, then we
simply drop it from the judgment.

F ∈ ∆
ax

∆ ` F

∆, F ` G
impR

∆ ` F ⊃ G

∆, F ⊃ G ` F ∆, F ⊃ G,G ` H
impL

∆, F ⊃ G ` H

∆, xτ ` F
allR

∆ ` ∀xτ . F

∆,∀xτ . F, [eτ/x]F ` H
allL

∆,∀xτ . F ` H

The rules are standard. We let the universal quantifier
range over expressions eτ . We write [eτ/x]F for the usual
notion of capture-avoiding substitution.

For practical reasons we will work with the assertion
logic with cut. The judgment ∆ `cut

F is defined by infer-
ence rules similar to the ones above except with `cut

instead
of `, plus one additional rule.

∆ `cut
F ∆, F `cut

G
cut

∆ `cut
G

The rules for defining the atomic formulas P vary for
each structural logical relation. Hence they are defined in
Sections 4 and 5, where we discuss concrete applications of
our technique. We show later in the paper that the choice of
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inference rules cannot be arbitrary: they must not destroy
the cut-elimination property of the sequent-calculus.

Returning to the definition of structural logical relations,
we can now define [[τ ]] more formally by meta-level induc-
tion on τ :

[[o]](e) = P (e)
[[τ2 ⇒ τ1]](e) = ∀e′τ2 . [[τ2]](e′) ⊃ [[τ1]](app e e′)

And more generally, the definition of an n-ary structural
logic relation is given by the following formula:

[[o]](e1 . . . en) = P (e1 . . . en)
[[τ2 ⇒ τ1]](e1 . . . en)

= ∀e′τ21 . . . .∀e′τ2n . [[τ2]](e′1 . . . e
′
n)

⊃ [[τ1]](app e1 e
′
1 . . . app en e

′
n)

An example of a binary structural logical relation can be
found in Section 5. Next, we derive the proof obligations
justifying a proof by structural logical relations in the unary
case.

1. If eτ then `cut
[[τ ]](e). (Fundamental Theorem)

2. `cut
[[τ ]](e) ⊃ P (e). (Escape Lemma)

3. If `cut
P (e) then ` P (e). (Cut-Elimination)

4. If ` P (e) then J(e). (Extraction Theorem)

Note that, instead of defining the structural logical rela-
tion using meta-level induction, we could have chosen to ex-
tend the assertion logic axiomatically by an induction prin-
ciple over types. However, this would have not only been
less convenient, but would have also complicated the cut-
elimination proof for our assertion logic, which we discuss
in Sections 4 and 5.

3. The Meta-Logical Framework Twelf

Turning to the formalization of a structural logical rela-
tions argument, we follow [Pfe95], and describe adequate
encodings of the simply typed λ-calculus and the sequent
calculus in the logical framework LF [HHP93] using Twelf
notation. First we address the formalization of simple types.

tp : type.
o : tp.
=> : tp -> tp -> tp. %infix right 10 =>.

Any LF object made from arrows => and base types o
corresponds to a well-formed simple type, and vice versa.
As => is declared infix, o => o => o is the represen-
tation of a function type that expects two arguments. In
Twelf, we write type for the kind of a type, and use curly
braces {t:tp} for dependent types and dependent kinds.

We write -> (infix) if the dependency is vacuous. Further-
more, we write [t:tp] for λ-abstraction, t:tp for type
ascription, and juxtaposition for application in the logical
framework.

Next, we define the syntactic category of terms eτ . If τ is
represented by T:tp, then we write tm T for the LF type
representing simply typed expressions eτ . The definition
takes advantage of the fact that, in LF, type families may be
indexed by LF objects.

tm : tp -> type.
lam : (tm T1 -> tm T2) -> tm (T1 => T2).
app : tm (T2 => T1) -> tm T2 -> tm T1.

The type of lam illustrates our use of higher-order abstract
syntax, which we use pervasively throughout this paper:
variables of the simply typed λ-calculus and assumptions
about the being well-typed are represented by variables of
LF.

Formulas of the assertion logic are encoded as LF ob-
jects of type form. We defer the formalization of atomic
formulas to the subsequent relevant sections in this paper.

form : type.
forall : (tm T -> form) -> form.
==> : form -> form -> form.

%infix right 10 ==>.

Every sequent derivation of F1, . . . , Fn ` G can be ade-
quately represented in LF as an object of type conc G in a
context u1 : hyp F1, . . . , un : hyp Fn. We distinguish two
variants of the assertion logic, the one without the cut rule
is depicted first.

hyp : form -> type.
conc : form -> type.
ax : hyp F -> conc F.
impr : (hyp F -> conc G)

-> conc (F ==> G).
impl : conc F -> (hyp G -> conc H)

-> (hyp (F ==> G) -> conc H).
forallr: ({x:tm T} conc (F x))

-> conc (forall F).
foralll: {E: tm T} (hyp (F E) -> conc H)

-> (hyp (forall F) -> conc H).

Analogously, every derivation of F1, . . . , Fn `
cut
G can

be adequately represented in LF as an object of type conc*
G. We give the encoding of the cut rule, the others are ob-
tained from the former by copying and replacing conc by
conc*.

conc* : form -> type.
cut : {F: form} conc* F

-> (hyp F -> conc* G)
-> conc* G.
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In the following two sections, we demonstrate the use of
structural logical relations for the proof of weak normaliza-
tion of the simply typed λ-calculus and the completeness of
an equivalence checking algorithm.

4. Normalization of Simply Typed λ-Terms

Our first demonstration of a proof by structural logical
relations takes place in the setting of the simply typed λ-
calculus. We show that every simply typed λ-term is weakly
normalizing, by which we mean that it can be reduced to
a β-short and η-long normal form. This is different from
the usual statement of weak normalization to η-short forms.
We define two judgments for canonical and atomic forms
of well-typed terms eτ , written judgmentally as e ⇑ τ and
e ⇓ τ . Canonical forms are defined over the structure of τ
and atomic forms are defined over the structure of e.

e ⇓ o
can o

e ⇑ o

u
x ⇓ τ1

...
e ⇑ τ2

can arrx,u
lam xτ1 . e ⇑ τ1 ⇒ τ2

e1 ⇓ τ2 ⇒ τ1 e2 ⇑ τ2
atm app

app e1 e2 ⇓ τ1

Next we define three judgments e −→ e′, e −→∗ e′, and
e

whr→ e′.

red beta
app (lam xτ . e1) e2 −→ e1[e2/x]

exp eta
e −→ lam xτ .app e x

e1 −→ e′1
cong app1

app e1 e2 −→ app e′1 e2

e2 −→ e′2
cong app2

app e1 e2 −→ app e1 e
′
2

e −→ e′
cong lamx

lam xτ . e −→ lam xτ . e′

red beta and exp eta define the rules for β-reduction and η-
expansion, respectively, and rules cong app1, cong app2,
and cong lam define the usual congruence rules. The fol-
lowing two rules describe the reflexive transitive closure of
−→.

refl
e −→∗ e

e1 −→ e2 e2 −→∗ e3
trans

e1 −→∗ e3

Next, we define weak head reduction.

whr beta
app (lam xτ . e1) e2

whr→ e1[e2/x]

e1
whr→ e′1

whr cong
app e1 e2

whr→ app e′1 e2

whr beta executes a β-reduction step, and whr cong defines
the congruence closure for weak-head reduction. As an ex-
ample, we give an adequate encoding of the weak-head re-
duction judgments and rules in LF.

whr: tm T -> tm T -> type.
whr_beta: whr (app (lam E1) E2) (E1 E2).
whr_cong: whr E1 E1’

-> whr (app E1 E2) (app E1’ E2).

We give the LF declarations of the remaining judgments,
without specifying the encoding of their rules. We will refer
to them, when we specify lemmas and theorems in Twelf
below. The type families

can : tm T -> type.
atm : tm T -> type.
red : tm T -> tm T -> type.
reds: tm T -> tm T -> type.

encode the judgments e ⇑ τ , e ⇓ τ , e −→ e′ and e −→∗ e′,
respectively. The complete encoding of the judgment can
be found at [SS08].

4.1. The Structural Logical Relation

We shall prove that for every derivation of eτ , there ex-
ists a vτ , s.t. e −→∗ v and v ⇑ τ via a unary structural
logical relation. The challenge, however, is the choice of
a predicate P . It may come as a surprise that it is suffi-
cient to characterize the fact that a term has a normal form
without making explicit what the normal form actually is
or how to obtain it. This information, as it turns out, can
be derived from the proof of P in the assertion logic. We
extend the assertion logic by three families of atomic predi-
cates hcτ (e), haτ (e), and whτ (e, e′), which stand for eτ has
a canonical form, eτ has an atomic form, and eτ weak-head
reduces to e′τ , respectively. The corresponding proof rules
are declared as follows.
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∆ ` haτ2⇒τ1(e1) ∆ ` hcτ2(e2)
ha app

∆ ` haτ1(app e1 e2)

∆, xτ1 , haτ1(x) ` hcτ2(app e x)
hc arr

∆ ` hcτ1⇒τ2(e)

∆ ` who(e, e′) ∆ ` hco(e′)
hc wh

∆ ` hco(e)

∆ ` hao(e)
hc atm

∆ ` hco(e)

wh beta
∆ ` whτ (app (lam x. e1) e2, e1[e2/x])

∆ ` whτ2⇒τ1(e1, e
′
1)

wh cong
∆ ` whτ1(app e1 e2, app e′1 e2)

The formulation of the sequent calculus with cut is extended
in the same fashion. We formalize this in LF as follows.

hc: tm T -> form.
ha: tm T -> form.
wh: tm T -> tm T -> form.

ha_app : conc (ha E1) -> conc (hc E2)
-> conc (ha (app E1 E2)).

hc_arr : ({x: tm T1} hyp (ha x)
-> conc (hc (app E x)))

-> conc (hc E).
hc_wh : {E:tm o} conc (wh E E’)

-> conc (hc E’)
-> conc (hc E).

hc_atm : {E: tm o} conc (ha E)
-> conc (hc E).

wh_beta: conc (wh (app (lam E1) E2) (E1 E2)).
wh_cong: conc (wh E1 E1’)

-> conc (wh (app E1 E2) (app E1’ E2)).

The rules extending conc* are analogous. The next
lemma and theorem illustrate how we can extract the canon-
ical form together with a reduction trace from the cut-free
derivation of ` hcτ (e). In Twelf, theorems are formalized
as relations between universally and existentially quantified
derivations. We give the relations as LF type families at the
end of selected proofs. The role that each argument to the
relation plays can always be read out of the informal state-
ment of the theorem.

Lemma 4.1 (Congruence)

1. If e −→∗ e′ then lam xτ . e −→∗ lam xτ . e′.

2. If e1 −→∗ e′1 and e2 −→∗ e′2 then
app e1 e2 −→∗ app e1 e

′
2.

3. If e whr→ e′ then e −→ e′.

Proof: By straightforward structural inductions. �

Theorem 4.2 (Extraction) All derivations in the sequent
calculus are assumed to be cut-free. Let ∆ =
xτ11 , haτ1(x1), . . . , xτn

n , haτn(xn) .

1. For all derivations of ∆ ` hcτ (e) there exist deriva-
tions of

u1

x1 ⇓ τ1
· · · un

xn ⇓ τn
. . .

... . .
.

v ⇑ τ

and e −→∗ v.

2. For all derivations of ∆ ` haτ (e) there exist deriva-
tions of

u1

x1 ⇓ τ1
· · · un

xn ⇓ τn
. . .

... . .
.

v ⇓ τ

and e −→∗ v.

3. For all derivations of ∆ ` whτ (e, e′) there exists a
derivation of e whr→ e′.

Proof: By mutual induction on the derivations of ∆ `
hcτ (e), ∆ ` haτ (e), and ∆ ` whτ (e, e′). 1. follows from
Lemma 4.1 (1), (3) and rules trans, exp eta, and n1, n2. 2.
follows from Lemma 4.1 (2) and rule atm app. 3. follows
from the application of rules whr beta, whr cong.

ext1 : conc (hc E)
-> {V} can V -> reds E V -> type.

ext2 : conc (ha E)
-> {V} atm V -> reds E V -> type.

ext3 : conc (wh E E’) -> whr E V -> type.

�

We define the logical relation as a predicate in the asser-
tion logic, by instantiating P (from the general definition of
a unary logical relation from Section 2) with hco.

Definition 4.3 (Logical relation)

[[o]](e) = hco(e)
[[τ2 ⇒ τ1]](e) = ∀eτ22 . [[τ2]](e2) ⊃ [[τ1]](app e e2)

lr : {T:tp} (tm T -> form)-> type.
lr1: lr o (hc: tm o -> form).
lr2: lr T2 F -> lr T1 G

-> lr (T2 => T1) ([e: tm (T2 => T1)]
(forall [e_2:tm T2] (F e2)

==> (G (app e e2))))
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4.2. Meta-Theory

All proofs in the remainder of this section are inductive
over the structure of types, typing derivations, and proofs in
the assertion logics. No definition of simultaneous substitu-
tions is needed. No extension of the concept of logical rela-
tion to simultaneous substitutions is needed. And finally, no
Kripke-style explicit contexts are needed in the definition of
the logical relation. This information is already implicitly
contained within the assertion logic proofs.

Lemma 4.4 (Escape) 1. For all types τ and assumptions
∆, there exists a derivation of ∆ `cut ∀eτ . [[τ ]](e) ⊃
hcτ (e).

2. For all types τ and assumptions ∆, there exists a
derivation of ∆ `cut ∀eτ . haτ (e) ⊃ [[τ ]](e).

Proof: By mutual induction on τ .

Case: τ = o. Direct, by reasoning using Def. 4.3 and rules
allR, impR, and ax.

Case: τ = τ2 ⇒ τ1. By induction hypothesis, we obtain
that for all ∆′

∆′ `cut ∀eτ1 . [[τ1]](e) ⊃ hcτ1(e) (1)

∆′ `cut ∀eτ1 . haτ1(e) ⊃ [[τ1]](e) (2)

∆′ `cut ∀eτ2 . [[τ2]](e) ⊃ hcτ2(e) (3)

∆′ `cut ∀eτ2 . haτ2(e) ⊃ [[τ2]](e) (4)

1. Follows by induction hypotheses (1) and (4), us-
ing Def. 4.3 and rules allR, impR, allL, impL, cut,
and hc arr.

2. Follows by induction hypotheses (2) and (3), us-
ing rules allR, impR, allL, cut, and ha app.

esc1: {T:tp} {F:(tm T) -> form} lr T F
-> (conc* (forall [e] F e

==> hc e)) -> type.
esc2: {T:tp} {F:(tm T) -> form} lr T F

-> (conc* (forall [e] ha e
==> F e)) -> type.

�

Lemma 4.5 (Closure under weak head expansion) For
all types τ and assumptions ∆, there exists a derivation
of ∆ `cut ∀eτ .∀e′τ .whτ (e, e′) ⊃ [[τ ]](e′) ⊃ [[τ ]](e) in the
assertion logic.

Proof: By induction on τ .

Case: τ = o. Direct, by reasoning using Def. 4.3 and rules
allR, impR, ax, and hc wh.

Case: τ = τ2 ⇒ τ1. By induction hypothesis, we obtain
that for all ∆′

∆′ `cut ∀eτ1 .∀e′τ1 .whτ1(e, e′) ⊃ [[τ1]](e′) ⊃ [[τ1]](e)

The claim follows from Def. 4.3 and rules
allR, impR, allL, impL, cut, and wh cong.

cwhe: {T: tp} {F: tm T -> form} lr T F
-> (conc* (forall [e] forall [e’]

wh e e’ ==> F e’ ==> F e))
-> type.

�

Theorem 4.6 (Fundamental) For all types τ and assump-
tions ∆ = xτ11 , [[τ1]](x1), . . . , xτn

n , [[τn]](xn) and for all eτ

with free variables among x1 . . . xn, there exists a deriva-
tion of ∆ `cut

[[τ ]](e).

Proof: By induction on the structure of e : τ .

Case: τ = τi, e = xi. Direct, by rule ax.

Case: e = app e1 e2. The claim follows from the induc-
tion hypotheses ∆ `cut

[[τ ]](e1) and ∆ `cut
[[τ ]](e2) using

Def. 4.3 and rules ax, allL, impL.

Case: e = lam xτn+1 . e′. The claim follows from the in-
duction hypothesis ∆, xτn+1, [[τn+1]](x) `cut

[[τ ′]](e′) us-
ing Def. 4.3, Lemma 4.5, and rule wh beta.

fund: {E:tm T} lr T F
-> conc* (F E) -> type.

�

In order to complete the proof, we need to appeal to a
proof normalization technique for our assertion logic: cut-
elimination. For any well-typed eτ , after applying the Fun-
damental Theorem 4.6, followed by the Escape Lemma 4.4,
followed by a few applications of the rules cut, foralll, and
impl, we obtain a cut-full proof of `cut

hcτ (e). The Extrac-
tion Theorem 4.2, however, requires the proof of ` hcτ (e)
to be cut-free. It is this step where the true work of the
structural logical relation proof takes place, as we need to
eliminate all cuts in order to apply the Extraction Theorem.

Theorem 4.7 (Cut-elimination) Let ∆ denote assump-
tions. Any cut-full sequent derivation of ∆ `cut

F can be
converted into ∆ ` F .

ce : conc* F -> conc F -> type.

Proof: See: Pfenning [Pfe95]. The extra cases introduced
by our atomic propositions all fall into the category of “right
commutative conversions.” �
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The following theorem summarizes all the work we have
done so far. It shows that the simply typed λ-calculus is
weakly normalizing.

Theorem 4.8 (Weak normalization) Let τ be a type and
eτ a (closed) well-typed expression; then there exists vτ ,
s.t. v ⇑ τ and e −→∗ v.

thm : {E:tm T} {V:tm T} can V
-> reds E V -> type.

5. Decidability of Equivalence Checking

The POPLmark challenge [ABF+05] aims to compare
different proof systems according to their ability to repre-
sent and reason about the meta-theory of programming lan-
guages. The proof of soundness and completeness of the
equivalence checking algorithm described in [Cra05] is a
potential POPLmark challenge problem. Out of the two
directions, the completeness proof is much more interest-
ing, because it employs a binary logical relation. A for-
malization of this proof in nominal Isabelle was given re-
cently [NU08]. In the remainder of this section, we demon-
strate how this proof can be formalized in Twelf via binary
structural logical relations. Since many of the judgments,
axioms, and inference rules are so similar to the ones in the
previous section, we have taken the liberty of reusing their
names.

First, we formally define definitional equality on terms.
We say that two terms eτ and e′τ are definitionally equiv-
alent at a type τ , written judgmentally as e ≡ e′ : τ and
specified by

e1 ≡ e′1 : τ2 ⇒ τ1 e2 ≡ e′2 : τ2
qapp

app e1 e2 ≡ app e′1 e
′
2 : τ1

u
x ≡ y : τ1

...
e ≡ e′ : τ2

qabsx,y,u

lam x. e ≡ lam y. e′ : τ1 ⇒ τ2

u
x ≡ y : τ2

...
e1 ≡ e′1 : τ1 e2 ≡ e′2 : τ2

betax,y,u

app (lam x. e1) e2 ≡ [e′2/y]e′1 : τ1

u
x ≡ y : τ1

...
app e x ≡ app e′ y : τ2

qextx,y,u

e ≡ e′ : τ1 ⇒ τ2

e ≡ e′ : τ
qsymm

e′ ≡ e : τ

e1 ≡ e2 : τ e2 ≡ e3 : τ
qtrans

e1 ≡ e3 : τ

We remark that this is not the exact definition of e1 ≡ e2

given in [Cra05]; however, any derivation of e1 ≡ e2 in
Crary’s sense can be easily mapped into a derivation of e1 ≡
e2 using the rules above. This has been formally proved
in [SS08].

We sketch the implementation in LF by giving an encod-
ing of judgments and theorems, but neither rules nor proofs.
The judgment e ≡ e′ : τ is represented as infix operator ==.

== : tm T -> tm T -> type.
%infix right 8 ==.

Second, we formally define the algorithm that decides
the equality on terms. Recall the definition of weak head
reduction from Section 4, for which we wrote e whr→ e′. For
its complement, which says that eτ does not weak-head re-
duce to anything, we declare two judgments e whr↓9 and e whr↑9
mimicking the distinction of atomic and canonical forms.
Their meaning is defined by the following set of rules.

nw lam
lam x. e

whr↑9

e
whr↓9

nw o
e

whr↑9

nw var
x

whr↓9

e1
whr↓9

nw app

app e1 e2
whr↓9

We define the weak head normalization portion of the
algorithm to quasi normal forms as e e′ : τ below.

e1
whr→ e2 : τ e2  e3 : τ

qan red
e1  e3 : τ

e
whr↑9

qan nor
e e : τ

In LF, we declare the type families

nwC : tm T -> type.
nwA : tm T -> type.
qnf : tm T -> tm T -> type.

for the judgments e whr↓9 , e whr↑9 , and e e′ : τ , respectively.
Next we define the equivalence algorithm for two well-
typed expressions eτ and e′τ via two judgments e ∼ e′ ↑ τ
and e ∼ e′ ↓ τ , whose completeness properties we will
study in this section.
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e1  e′1 e2  e′2 e′1 ∼ e′2 ↓ o
qat base

e1 ∼ e2 ↑ o

u
x ∼ x ↓ τ

...
app e x ∼ app e′ x ↑ τ2

qat arrowx,u

e ∼ e′ ↑ τ1 ⇒ τ2

e1 ∼ e′1 ↓ τ2 ⇒ τ1 e2 ∼ e′2 ↑ τ2
qap app

app e1 e2 ∼ app e′1 e
′
2 ↓ τ1

We write

algC : tm T -> tm T -> type.
algA : tm T -> tm T -> type.

for e ∼ e′ ↑ τ and e ∼ e′ ↓ τ , respectively.

5.1. The Structural Logical Relation

We shall prove that if e ≡ e′ : τ then e ∼ e′ ↑ τ . Follow-
ing the example in Section 4, we extend the assertion logic
defined in Section 2 by binary versions of the predicates
haτ (e, e′) and hcτ (e, e′) at types τ , and the corresponding
inference rules. As for weak-head reduction, we simply
reuse the definition of the binary predicate whτ (e, e′) and
specify the meaning of the new predicates by the following
rules.

∆ ` haτ2⇒τ1(e1, e
′
1) ∆ ` hcτ2(e2, e

′
2)

ha app
∆ ` haτ1(app e1 e2, app e′1 e

′
2)

∆, xτ1 , haτ1(x, x) ` hcτ2(app e x, app e′ x)
hc arr

∆ ` hcτ1⇒τ2(e, e′)

∆ ` who(e1, e2) ∆ ` hco(e2, e
′)

hc wh
∆ ` hco(e1, e

′)

∆ ` hao(e, e′)
hc atm

∆ ` hco(e, e′)

We also give rules for symmetry and transitivity.

∆ ` hcτ (e′, e)
hc sym

∆ ` hcτ (e, e′)

∆ ` hcτ (e1, e2) ∆ ` hcτ (e2, e3)
hc tr

∆ ` hcτ (e1, e3)

In LF all of these rules are encoded as follows:

ha_app: conc (ha E1 E1’) -> conc (hc E2 E2’)
-> conc (ha (app E1 E2) (app E1’ E2’)).

hc_arr: ({x: tm T} hyp (ha x x)
-> conc (hc (app E x) (app E’ x)))
-> conc (hc E E’).

hc_wh : conc (wh (E1 : tm o) E2)
-> conc (hc E2 E’)
-> conc (hc E1 E’).

hc_atm: conc (ha (E : tm o) E’)
-> conc (hc E E’).

hc_sym: conc (hc E’ E) -> conc (hc E E’).
hc_tr : conc (hc E1 E2) -> conc (hc E2 E3)

-> conc (hc E1 E3).

The rules for conc* are defined analogously. The next
lemma and theorem illustrate how we can extract the ex-
ecution trace of the equivalence checking algorithm from
a cut-free derivation of hcτ (e, e′). The formulation of the
extraction theorem and its proof follow roughly the same
structure as Theorem 4.2.

Lemma 5.1 (Congruence)

1. If e′1 ∼ e2 ↑ τ and e1
whr→ e′1 then e1 ∼ e2 ↑ τ .

2. If e1 ∼ e2 ↓ τ then e1
whr↓9 and e2

whr↓9 .

3. If e ∼ e′ ↓ τ then e′ ∼ e ↓ τ .

4. If e ∼ e′ ↑ τ then e′ ∼ e ↑ τ .

5. If e ∼ e′ ↓ τ and e′ ∼ e′′ ↓ τ then e ∼ e′′ ↓ τ .

6. If e ∼ e′ ↑ τ and e′ ∼ e′′ ↑ τ then e ∼ e′′ ↑ τ .

Proof: By straightforward structural inductions. �

Theorem 5.2 (Extraction) All derivations in the sequent
calculus are assumed to be cut-free. Let

∆ = xτ11 , haτ1(x1, x1), . . . , xn :τn , haτn(xn, xn).

1. For all derivations of ∆ ` hcτ (e, e′) there exists a
derivation of

u1

x1 ∼ x1 ↓ τ1
· · · un

xn ∼ xn ↓ τn
. . .

... . .
.

e ∼ e′ ↑ τ.

2. For all derivations of ∆ ` haτ (e, e′) there exists a
derivation of

u1

x1 ∼ x1 ↓ τ1
· · · un

xn ∼ xn ↓ τn
. . .

... . .
.

e ∼ e′ ↓ τ.
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Proof: By induction on the cut-free assertion logic proofs,
using Lemma 5.1.

ext1 : conc (hc E E’)
-> algC E E’ -> type.

ext2 : conc (ha E E’)
-> algA E E’ -> type.

�

We define the logical relation as a predicate in the asser-
tion logic by instantiating P (from the general definition of
a binary logical relation from Section 2) with hco.

Definition 5.3 (Binary logical relation)

[[o]](e, e′) = hco(e, e′)
[[τ2 ⇒ τ1]](e, e′) = ∀eτ22 .∀e

′τ2
2 . [[τ2]](e2, e

′
2)

⊃ [[τ1]](app e e2, app e′ e′2)

lr : {T:tp} (tm T -> tm T -> form)-> type.
lr_o: lr o hc.
lr_a: lr T2 F -> lr T1 G

-> lr (T2 => T1) ([e] [e’]
forall [e2] forall [e2’] (F e2 e2’)

==> (G (app e e2) (app e’ e2’)))

5.2. Meta-Theory

Next, we extend all theorems from the previous section
to the binary logical relation.

Lemma 5.4 (Escape) 1. For all types τ and assump-
tions ∆, there exists a derivation of ∆ `cut

∀eτ .∀e′τ . [[τ ]](e, e′) ⊃ hcτ (e, e′).

2. For all types τ and assumptions ∆, there exists a
derivation of ∆ `cut ∀eτ .∀eτ . haτ (e, e′) ⊃ [[τ ]](e, e′).

Proof: By induction on τ . The proof follows exactly the
same structure as the proof of Theorem 4.4, and is hence
omitted.

esc1: {T:tp} {F:(tm T) -> (tm T) -> form}
lr T F
-> (conc* (forall [e] forall [e’]
F e e’ ==> hc e e’)) -> type.

esc2: {T:tp} {F:(tm T) -> (tm T) -> form}
lr T F
-> (conc* (forall [e] forall [e’]
ha e e’ ==> F e e’)) -> type.

�

Lemma 5.5 (Closure under weak head expansion) For
all types τ and assumptions ∆ , there exists a derivation of

∆ `cut ∀eτ1 .∀eτ2 .∀e′τ .
whτ (e1, e2) ⊃ [[τ ]](e2, e

′) ⊃ [[τ ]](e1, e
′)

and
∆ `cut ∀eτ .∀e′τ1 .∀e′τ2 .

whτ (e′1, e
′
2) ⊃ [[τ ]](e, e′2) ⊃ [[τ ]](e, e′1)

in the assertion logic.

Proof: By induction on τ . Again, the proof follows exactly
the same structure as the proof of Lemma 4.5.

cwhe: {T: tp} {F: tm T -> tm T -> form}
lr T F
-> (conc* (forall [e1] forall [e2]

forall [e’] wh e1 e2 ==>
F e2 e’ ==> F e1 e’))

-> (conc* (forall [e] forall [e1’]
forall [e2’] wh e1’ e2’ ==>

F e e2’ ==> F e e1’))
-> type.

�

Lemma 5.6 (Symmetry) For all types τ , we show that

∆ `cut ∀eτ .∀e′τ . [[τ ]](e, e′) ⊃ [[τ ]](e′, e).

Proof: By induction on τ , using Def. 5.3, and rules
allR, impR, ax, allL, impL, hc sym, and cut.

sym: lr T F
-> conc* (forall[e] forall [e’]

F e e’ ==> F e’ e) -> type.

�

Lemma 5.7 (Transitivity) For all types τ , we show that

∆ ` ∀eτ .∀e′τ .∀e′′τ .
[[τ ]](e, e′) ⊃ [[τ ]](e′, e′′) ⊃ [[τ ]](e, e′′).

Proof: By induction on τ using Def. 5.3, Lemma 5.6, and
rules ax, hc trans, allR, impR, allL, impL, and cut.

tr: lr T F
-> conc* (forall [e] forall [e’]

forall [e’’] F e e’ ==>
F e’ e’’ ==> F e e’’)

-> type.

�

Theorem 5.8 (Fundamental) For all types τ and assump-
tions

∆ = xτ11 , y
τ1
1 , [[τ1]](x1, y1), . . . , xτn

n , y
τn
n , [[τn]](xn, xn)
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and for all e with free variables among x1 . . . xn and e′ with
free variables among y1 . . . yn. For every derivation of

u1

x1 ≡ y1 : τ1
· · · un

xn ≡ yn : τn
. . .

... . .
.

e ≡ e′ : τ

there exists a derivation of ∆ `cut
[[τ ]](e, e′).

Proof: By structural induction on e ≡ e′ : τ using
Def. 5.3, Lemma 5.5, Lemma 5.6, Lemma 5.7, and rules
ax, allL, allR, impR, impL, cut and wh beta.

fund: {E:tm T}{E’} E == E’ -> lr T F
-> conc* (F E E’) -> type.

�

Theorem 5.9 (Cut-elimination) Let ∆ denote assump-
tions. Any cut-full sequent derivation of ∆ `cut

F can be
converted into ∆ ` F .

Proof: See: Pfenning [Pfe95]. The extra cases introduced
by our atomic propositions all fall into the category of “right
commutative conversions.”

ce : conc* F -> conc F -> type.

�

The following theorem summarizes all the work we have
done so far. It shows that convertible terms considered
equal, can always been recognized as such.

Theorem 5.10 (Completeness) For every derivation of
e ≡ e′ : τ there exists a derivation of e ∼ e′ ↑ τ .

Proof:

e ≡ e′ : τ by assumption
`cut

[[τ ]](e, e′) by Theorem 5.8
`cut ∀eτ .∀e′τ . [[τ ]](e, e′) ⊃ hcτ (e, e′) by Lemma 5.4
`cut

hcτ (e, e′) by ax, allL, impE
` hcτ (e, e′) by Theorem 5.9
e ∼ e′ ↑ τ by Theorem 5.2

thm: {E:tm T} {E’:tm T} eq E E’
-> algC E E’ -> type.

�

All proofs presented in this paper are verified by
Twelf [SS08].

6. Cut-Elimination

Gödel’s second incompleteness theorem tells us that no
consistent logic can prove its own consistency, provided the
logic is powerful enough to express some very basic coding
machinery. Through the lens of the Curry-Howard isomor-
phism, any typed λ-calculus can be viewed as a logic. Both
of the example theorems in this paper, weak normalization
and the completeness of a decidable equivalence checking
algorithm, imply the consistency of the simply typed λ-
calculus when viewed as a logic. This is typical: most
theorems that are proven using logical relations are essen-
tially consistency theorems. Thus, it will be impossible to
completely formalize any such theorem about a λ-calculus
whose proof-theoretic strength exceeds the proof-theoretic
strength of the meta-logic.

Recall that, after appealing to the Fundamental Theo-
rem 4.6 and Escape Lemma 4.4 in the proof of Theorem 4.8,
we obtain a cut-full derivation of `cut

hcτ (e). We could have
stopped here if we were certain that this were a meaning-
ful witness to the normalization of e; i.e. if we trusted the
consistency of the assertion logic. To be sure, we prove
cut-elimination and produce a real witness from the cut-free
derivation ` hcτ (e). In general, if the meta-logic is proof-
theoretically stronger than the assertion-logic, then it should
be possible to prove cut-elimination explicitly.

Our example proofs by structural logical relations re-
duce the validity of a consistency theorem to the consistency
of the assertion logic. Because these reductions use only
primitive-recursive machinery, the proof-theoretic strength
of the assertion logic must be at least as great as the proof-
theoretic strength of the λ-calculus that we are reasoning
about. Thus, to scale our examples to Gödel’s T, the as-
sertion logic should provide some notion of induction; to
System F, the assertion logic should provide some notion of
second-order quantification.

It is worth mentioning that logical consistency is usually
proven using either model-theoretic machinery, transfinite
induction, or logical relations. Model theoretic machinery
is justified by the assumption that set-theory is consistent;
transfinite induction is justified by the assumption that a par-
ticular ordinal is well founded; a typical logical relations
argument is justified by appealing implicitly to the valid-
ity of the logical connectives used to define the relation.
Structural logical relations bring these assumptions to the
surface.

7. Conclusion

In this paper we describe the technique of structural
logical relations and show how to use it to prove inter-
esting theorems, such as the completeness of the equiva-
lence checking algorithm for the simply typed λ-calculus.
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Structural logical relations work well when formalizing
proofs by logical relations in proof assistants with a proof-
theoretically weak meta-logic but good representational
support for working with complex data structures, such as,
for example, proof derivations in a sequent calculus.

We do not claim to be the first to characterize a logical
relation in terms of the provability of a logical predicate.
Indeed, for informal proofs, the idea goes back to Tait’s
original paper [Tai67]. However, to our knowledge, this is
the first work where we separate the roles of the assertion
logic and the meta-logic for the purpose of formalization. In
proof assistants with strong induction principles, for exam-
ple Lego or Coq, logical relations are formalized via induc-
tive types [Alt93, BW97, DX06], and reasoned about using
elimination forms. Structural logical relations provide not
only an alternative, but they make explicit the logical foun-
dations a particular proof is based on.

Proofs by logical relations are popular in large part be-
cause they tend to scale well. We believe that our technique
preserves this property. For example, in Section 4 and 5 we
successfully apply our technique to normalization proofs
about the simply typed λ-calculus. Further experiments,
such as normalization properties of the monadic λ-calculus
(inspired by [LS05]), and about Gödel’s T, have shown that
the basic structure of the proof remains unchanged but the
assertion logic needs to be suitably extended by new infer-
ence rules.

Closely related to our work is that of Andreas
Abel [Abe08]. He also proves weak normalization di-
rectly in Twelf, albeit only for the simply typed λ-calculus.
Though he does not use a logical relation, there are strik-
ing similarities between the structure of his proof and ours,
which should be investigated further.
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