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One of the central goals of programming-language research is to develop math-

ematically sound formal methods for precisely specifying and reasoning about the

behavior of programs. However, just as software developers sometimes make mis-

takes when programming, researchers sometimes make mistakes when proving that

a formal method is mathematically sound. As the field of programming-language

research has grown, these proofs have become larger and more complex, and thus

harder to verify on paper. This phenomenon has motivated a great deal of research

into the development of logical systems that provide an automated means to apply—

and verify the application of—trusted reasoning principles to concrete proofs.

The boundary between trusted and untrusted reasoning principles is inherently

blurry, and different researchers draw the line in different places. However, just as cer-

tain principles are widely recognized to allow the proofs of contradictory statements,

others are so uncontroversially ubiquitous in practice that they can be considered

beyond reproach. We posit the following questions: (1) what are these principles

and (2) how much can we do with them?

Although neither has an uncontroversial answer, in this dissertation we propose an

answer to the former by describing a philosophical viewpoint we refer to as syntactic

finitism, in which the principles of case analysis and structural induction on abstract

syntax are viewed as being a priori justified. We explore the latter question using

some of the ideas and results from proof theory; along the way, we provide a syntacti-
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cally finitary account of proofs by logical relations, and investigate the consequences

of replacing structural induction with well-founded induction on the lexicographic

path ordering from term rewriting theory. Finally, we argue that syntactically fini-

tary proofs can be formalized in the proofs as logic programs paradigm popularized by

the proof assistant Twelf; we prove the soundness of a modular termination-analysis

that is central to the validity of this interpretation.
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Chapter 1

Introduction

At its heart, computer science is not as much the study of computers as it is the

study of problems that computers can be used to solve. But what does it mean for

a problem to be solved with a computer? Simply writing a program is not enough,

regardless of the computational paradigm; the program must also be correct, and

establishing correctness requires the ability to reason, be it formally or informally,

about the behavior of software.

We live in a world where it is increasingly common to rely on the correctness

of computer programs, and where the consequences of incorrect programs can range

from inconvenience to the loss of life. At the same time, the programs that we rely

on are becoming increasingly complex, and thus harder to reason about informally.

This phenomenon has motivated a great deal of programming-language research into

the development of mathematically sound formal methods for precisely specifying

and reasoning about the behavior of programs (e.g. operational semantics, denota-

tional semantics, type systems and Hoare logic), along with practical tools that give

programmers a (semi-) automated means to apply—and verify the application of—

these techniques to concrete programs (e.g. type checkers, abstract interpretors and
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model checkers).

However, just as software developers sometimes make mistakes when program-

ming, researchers sometimes make mistakes when proving that a formal method is

mathematically sound. That is, simply writing a soundness proof is not enough;

the proof must also be correct, and establishing the correctness of a proof requires

the ability to reason, be it formally or informally, about the applicability of trusted

reasoning principles. As the field of programming-languages research has grown, the

proofs have become larger and more complex, and thus harder to verify informally.

This phenomenon has motivated a great deal of research into the development of

logical systems (e.g. Coq, Isabelle, Agda and Twelf) that allow researchers a (semi-)

automated means to apply—and verify the application of—trusted reasoning princi-

ples to concrete proofs. But exactly which reasoning principles can be trusted?

This is a deeply philosophical question, whose answer varies from person to per-

son; we do not attempt to answer it here. However, just as certain reasoning princi-

ples (e.g. the unrestricted comprehension axiom in naive set theory and type:type in

type theory) are widely recognized to allow the proofs of contradictory statements

(e.g. Russel’s paradox, Girard’s paradox), other reasoning principles are so uncon-

troversially ubiquitous in practice that they can be considered beyond reproach. We

posit the following questions: (1) what are these principles and (2) how much can

we do with them? Although neither has an uncontroversial answer, we propose an

answer to the former in the remainder of this section, and explore the latter in the

remainder of this dissertation.
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1.1 Abstract Syntax and Judgments

The dear God made the whole numbers, everything

else is the work of man.

Leopold Kronecker (attributed in [Web93])
quote translated from German by Dirk Schlimm

The tradition called “syntactic”. . . would without

doubt have disappeared in one or two more decades,

for want of any issue or methodology. The disaster

was averted because of computer science – that

great manipulator of syntax – which posed it some

very important theoretical problems.

Jean-Yves Girard [GLT89]

Syntax is as fundamental to the study of programming languages as the whole

numbers are to mathematics. Thus, we regard the definition of syntactic categories

using BNF-style notation as being a priori justified. For example, the natural num-

bers (or, if we were to interpret z as a representation of the number 1, the whole

numbers) can be defined in this manner as follows.

Natural Numbers n,m ::= z | s n

The left-hand side of this definition establishes “n” and “m” as standing for arbitrary

natural numbers; right-hand side allow us to “build up” natural numbers using the

term constructors “z” and “s”.

In order to reason about syntax, we need some means to express the properties

that syntactic terms may or may not possess. Although there are several ways of

doing this, perhaps the most basic and widespread is to define judgments using in-

ference rules, a practice that we consider to be a priori justified. For example, we
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may define the assertion that a particular natural number is even, along with the

assertion that a particular natural number is odd, as judgments defined by the fol-

lowing inference rules.

evenz

even(z)

even(n)
odds

odd(s n)

odd(n)
evens

even(s n)

Judgments can also be used to represent computations. For example, we may

define the assertion that the natural numbers n0 and n1 sum to the number m by

defining the judgment add(n0; n1; m) using the following inference rules.

addz

add(z; n1; n1)

add(n0; n1; m)
adds

add(s n0; n1; sm)

The relationship between the Ackermann function’s inputs and outputs can be rep-

resented similarly.

ackz

ack(z; n1; s n1)

ack(n0; s z; m)
acksz

ack(s n; z; m)

ack(s n0; n1; m) ack(n0; m; m′)
ackss

ack(s n0; s n1; m′)

In general, inference rules can be used to “build up” derivations of judgments

in much the same way that the clauses of a BNF-style definition can be used to

build up syntactic terms. We refer to arbitrary derivations of a judgment such

as ack(n0; n1; m) using the notation D : ack(n0; n1; m) (or just D whenever the

judgment is clear from the context), and say that a judgment is inhabited to mean

that such a derivation exists. We write concrete derivations of judgments as trees;

for example, a derivation of the judgment ack(s z; s z; s (s (s z))) would be written

as follows.

ackz

ack(z; s z; s (s z))
acksz

ack(s z; z; s (s z))
ackz

ack(z; s (s z); s (s (s z)))
ackss

ack(s z; s z; s (s (s z)))

In general, judgments can be thought of as making logical assertions, where a

derivation is a finite witness to an assertion’s validity. That is, ack(s z; s z; s (s (s z)))
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can be thought of as being “true” or “provable” (evident in the terminology of

Martin-Löf [ML85]) by virtue of the fact that it is inhabited by the derivation written

above. Judgments that make logical assertions of the form “the program e evalu-

ates to a value v” are widely and uncontroversially used to specify the semantics of

programming languages. Such judgmental specifications are referred to as structural

operational semantics [Plo81].

Some judgments fail to define interesting logical assertions; this, however does

not preclude their derivations from being interesting. One such judgment is de-

fined below; its derivations are isomorphic to the natural numbers, as defined at the

beginning of this section.

z

nat

nat
s

nat

In general, any syntactic category defined in BNF-style notation can be expressed

as a judgment. Similarly, if we broaden our notion of BNF-style definition to allow

syntactic categories that depend on one another, we can define syntactic categories

whose terms are isomorphic to the derivations of arbitrary judgments. For example,

the syntactic categories En and On, defined below, are isomorphic to derivations of

the judgments even(n) and odd(n), respectively.

En ::= evenzz | (evens On)s n

On ::= (odds En)s n

Although the use of dependencies in the definition of abstract syntax is not partic-

ularly widespread, such definitions are no less justifiable than judgments defined by

inference rules. Thus, the distinction between syntactic categories and judgments

is essentially a matter of notational preference. We refer to this observation as the

judgments-as-types principle, for reasons that will be made more clear in Section 5.1.
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1.2 Syntactic Finitism

Syntactic categories and judgments are both inherently syntactically finitary concepts

in the sense that, although there may be unboundedly many natural numbers, each

individual natural number is constructed from finitely many uses of the constructors

z and s, and nothing else. Thus, we are a priori justified not only in building up

concrete terms and derivations via the application of constructors and inference rules,

but in taking apart abstract terms and derivations via case analysis and transforming

them into potentially different types of objects via structural induction (i.e. well-

founded induction on the subterm ordering). We show an example of such reasoning,

which includes a non-trivial case analysis, in the theorem below.

Theorem 1.2.1 If D : add(n0; n1; m) and E : (even(n0)) and even(n1) then

even(m)

Proof: By structural induction on E (n0 and D are equally suitable candidates).

Note that the statement of the theorem is shorthand for the following, more verbose

statement: “For every n0, n1,m, for every D : (add(n0; n1; m)) and for every E :

(even(n0)) and for every F : even(n1) there exists G : (even(m)).

Case:

E =
evenz

even(z)

D =
addz

add(z; n1; n1)

even(n1) given
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Case:

E =

E0

even(n0)
odds

odd(s n0)
evens

even(s (s n0))

D =

D0

add(n0; n1; m)
adds

add(s n0; n1; sm)
adds

add(s (s n0); n1; s (sm))

even(n1) given

even(m) by IH on E0

odd(sm) by rule odds

even(s (sm)) by rule evens

�

Informally, Theorem 1.2.1 tells us that the given summand of two even numbers

is even. However, thus far we have not shown that such a summand must always

exist. We can do so by proving the statement “for every n0, n1, there exists an m

such that add(n0; n1; m),” which, in this case follows by a straightforward structural

induction on the structure of n0. Thus, we can think of add as describing a (total)

function1 from its first two arguments to its third.

The analogous totality statement for ack—“for every n0, n1, there exists an m

such that ack(n0; n1; m)”—can also be proven by a straightforward induction, not on

1Technically this only shows that add’s third argument is a potentially nondeterministic total
function of its first two arguments, since we have not yet shown that it is unique (although in
this case, doing so would be straightforward). In this document, we view all functions as being
potentially nondeterministic until proven otherwise, and only explicitly prove determinacy when
doing so is germane to the discussion at hand.
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the structure of n0 or on the structure of n1, but on the lexicographic ordering of n0

and n1. In general, we consider well-founded induction to be a priori justified on any

ordering that we consider intuitively well-founded, such as the lexicographic ordering

of two well-founded orderings. For now, we restrict our attention to the subterm

ordering on terms/derivations, and the lexicographic and simultaneous orderings on

tuples of terms/derivations; we will consider both the consequences of this restriction

in Chapter 3, and the impact of assuming much stronger ordering is well-founded in

Chapter 4.

Recall that lexicographic orderings generalize the notion of the alphabetical or-

dering used to order words in dictionaries, and precisely captures the notion of “tie

breaker” sometimes used to rank sports teams (e.g. teams are ranked first by their

win-loss record, teams with the same record are ranked by their point differential,

etc.). More precisely, one tuple is smaller than another iff the first n elements of

each are equal in size, and the (n + 1)th element of the first is strictly smaller than

the (n + 1)th element of the second. The simultaneous ordering can be seen as a

special case of the lexicographic ordering: one tuple simultaneously smaller than

another iff every element of the first is smaller-than or equal-in-size to the corre-

sponding element in the second tuple, and moreover at least one of these inequalities

is strict. The simultaneous ordering can be generalized to be commutative: one tu-

ple is smaller than another iff the elements of the first can be permuted such that

the resulting tuple is smaller than the second according to the ordinary simultane-

ous ordering. Strictly speaking this commutative generalization is unnecessary: any

theorem whose inductive proof uses the natural sum ordering on an n-tuple of deriva-

tions can, in principle, be transformed into n! mutually inductive theorems whose

proofs use the conventional simultaneous ordering.
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In terms of ordinal arithmetic, the lexicographic ordering defines ordinal multi-

plication; the significance of this observation will be expounded upon in Chapter 3.

1.3 Hypothetical Judgments and Bound Variables

Consider the syntactic category τ , defined below.

σ, τ ::= o | σ ⇒ τ

For now we wish to think of τ as defining propositions, where o is an empty propo-

sition, and σ ⇒ τ is an implication. We have seen that judgments can be used to

define logical assertions such as “the natural number n is even”; they can also be

used to define assertions of a more transparently logical nature, such as “the formula

τ is provable.” We give an example of a natural deduction style proof system by the

hypothetical judgment ` τ nd with the following inference rules.

xσ

` σ nd
...

` τ nd
lamxσ

` σ ⇒ τ nd

` σ ⇒ τ nd ` σ nd
app

` τ nd

Informally, the rule lamxσ can be applied to a derivation containing any number of

free uses of the inference rule xσ, where we regard the exact choice of the name xσ

as being irrelevant to the identity of the resulting derivation. In other words, we can

view the rule lamxσ as binding the inference-rule variable xσ. In general, we view

variables as holes that can be filled with arbitrary derivations, thus justifying the

following principle of substitution: given a derivation D : ( ` τ nd) that contains

some number of free occurrences of the inference-rule variable xσ, and a derivation

E : ( ` σ nd), there exists a derivation of ` τ nd, written D[E/xσ], in which all
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occurrences of xσ in D have been replaced by E . Given the machinery described

thus far, we either view the (capture-avoiding) substitution principle (and thus the

notation D[E/xσ]) as being a priori justified, or as a theorem that must be proven

by induction (where D[E/xσ] = F would be formulated judgmentally). In this doc-

ument, we adopt the former view for the sake of convenience, although our results

do not depend on this in any essential way.

We can also define natural deduction style proofs using BNF-style notation.

eτ ::= xτ | (lam xσ. eτ )σ⇒τ | (app eσ⇒τ1 eσ2 )τ

If we think of τ as defining types rather than propositions, eτ clearly defines the

well-typed terms of the simply typed λ-calculus. For example, we can define the

notion of single- and multi-step reduction by β-contraction and η-expansion using

the following judgments (where we omit type superscripts where they are easily

inferred or irrelevant).

red-beta

app (lam xτ . eσ1 ) eτ2 −→ eσ1 [eτ2/x
τ ]

exp-eta

eσ⇒τ −→ lam xτ .app eσ⇒τ xσ

eσ⇒τ1 −→ e′σ⇒τ1
cong-app1

app eσ⇒τ1 eσ2 −→ app e′σ⇒τ1 eσ2

eσ2 −→ e′σ2
cong-app1

app eσ⇒τ1 eσ2 −→ app eσ⇒τ1 e′σ2

eσ −→ e′σ
cong-lamxσ

lam xτ . eσ −→ lam xτ . e′σ

reds-refl

eτ −→∗ eτ
eτ1 −→ eτ2 eτ2 −→∗ eτ3

reds-trans

eτ1 −→∗ eτ3

Alternatively, −→ and −→∗ can be thought of as defining reductions on derivations

of ` τ nd. In other words, the judgments-as-types principle can be viewed as a

generalization of the proofs-as-programs principle of the Curry-Howard isomorphism.

We view the following theorem as being valid under either interpretation.
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Theorem 1.3.1 (Congruence of Multistep Reduction)

1. If eτ −→∗ e′τ then lam xσ.e −→∗ lam xσ.e′τ

2. If eσ⇒τ1 −→∗ e′σ⇒τ1 and eσ2 −→∗ e′σ2 then (app eσ⇒τ1 eσ2 ) −→∗ (app eσ⇒τ1 e′σ2 )

Proof: 1 is by straightforward induction on the structure of the given derivation; 2 is

by straightforward simultaneous induction on the structure of the given derivations.

�

At times, we will find it convenient to reason about whether a variable occurs

freely within a term or derivation. In general, we write the judgmental specification

of such a judgment along the lines of xτ ∈ FV (eτ ), although in practice we do not

specify the inference for such judgments for the sake of brevity.

1.4 The Role of Consistency

In some ways, our goals are similar in spirit to the goals of Hilbert’s program. Orig-

inally proposed by the mathematician David Hilbert in the early 20th century,

Hilbert’s program aimed to provide an axiomatic formalization of all mathemati-

cal reasoning and to justify the consistency of this axiomatization using only finitary

methods similar in spirit to the notion of syntactically finitary methods outlined

above. Informally, a logic is consistent whenever its proof theory is somehow nontriv-

ial in a meaningful way. Because we are interested in formalizing informal concepts,

it seems prudent to consider how the notion of consistency might be made precise.

Perhaps the most common way to demonstrate that a logic is consistent is to show

that it is “free from contradiction”; i.e. , that there can be no proof of a formula

such as F ∧ ¬F or z = s z. This definition is somewhat unsatisfying, because it

relies on specific logical connectives that may or may not exist within the formalism
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under consideration. However, this notion can be generalized somewhat: a logic is

consistent if, and only if, there is at least one formula that cannot be proved. This

notion of absolute consistency usually follows as a corollary from a normalization

theorem of some kind, such as cut elimination: first it is shown that all proofs can

be normalized, then it is shown by case analysis that there are no normal proofs of

a particular formula. Most of the time, absolute consistency captures what we mean

by consistency. Unfortunately, this is not always the case.

Consider the (propositional) logic whose only atomic formula is true, and whose

only logical connective is implication (under the Curry-Howard interpretation, this

would be the simply-typed λ-calculus with a constant at base type). Every formula

in this logic is provable, and yet the proofs themselves are not without meaning;

several conservative extensions of this logic are consistent in the absolute sense, and

moreover, the proof terms of this logic can be normalized. Unfortunately, neither of

these observations brings us any closer to a uniform definition of consistency.

Consider an inconsistent logic, such as naive set theory, whose syntactic category

of formulas we denote (in this paragraph only) using F . We can define the formulas

of a new logic by a BNF-style equation of the form G ::= F | ⊥ (where ⊥ is

not a formula in F ), whose proof rules are those of naive set theory. Clearly, the

newly resulting logic is an “absolutely consistent,” conservative extension of naive

set theory. And yet we consider neither naive set theory, nor this trivial conservative

extension, to be consistent in any useful sense.

Defining a logic to be consistent whenever its proof theory admits some sort of

normalization theorem is similarly problematic. Consider, for example, a consistent

first-order theory, such as Heyting Arithmetic or the algebraic theory of groups,

whose syntactic category of formulas we denote (in this paragraph only) using F . If

we were to add a “normal” proof rule of the form

12



foo

` F

then the resulting logic would clearly be inconsistent in any reasonable sense of the

word. And yet, every proof in the resulting logic can be “reduced” to a “normal”

proof; namely, the proof that consists entirely of an application of the rule foo.

In general, we argue that any attempt to precisely define logical consistency

will be fraught with exceptions. Thus, we eschew a precise definition in favor of

an informal test, originally employed by Supreme Court Justice Potter Stewart to

help clarify a somewhat different concept: we may not be able to precisely define

consistency, but we know it when we see it.

Although Hilbert’s program successfully spawned a great deal of pioneering re-

search into the foundations of mathematics, its goals were eventually shown to be

unobtainable: in 1931, Kurt Gödel published his now famous incompleteness theo-

rems, the second of which shows that no consistent logical formalism that is capable

of expressing certain very basic arithmetical truths can be used to prove its own con-

sistency, let alone the consistency of more powerful logic. Although Gödel’s original

result was phrased in terms of absolute consistency, we claim that it applies to any

reasonable interpretation of the word.

It follows that any consistency proof must rely, either implicitly or explicitly, on

assumptions that are at least as strong as the statement being proven. Although

this means that it is not possible to prove consistency of any interesting logic out-

right, consistency proofs can be usefully thought of as reducing one set of possibly

questionable assumptions to another set of more intuitively trustworthy assumptions.
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1.5 Outline and Contributions

We have argued that the syntactically finitary reasoning principles outlined thus

far—that is, the ability to form terms and derivations via the application of infer-

ence rules and to transform them into different types of objects via case analysis and

induction—characterize a reasonable lower bound on the forms of reasoning used by

programming-languages researchers. Moreover, we argue that syntactic finitism es-

sentially captures the notion of proof formalized by the proof assistant Twelf [PS99],

which has been successfully used to formalize an impressive array of programming

languages metatheorems. Our goal is to better understand the foundational expres-

sivity of these principles; that is, in which situations does syntactic finitism suffice,

and in which situations is it absolutely necessary to employ more powerful forms of

reasoning?

Through the lens of the Curry-Howard isomorphism, any typed λ-calculus can be

viewed as a logic, and thus any metatheorem about one can be viewed as an equivalent

metatheorem about the other. Consistency proofs can provide a sort of benchmark

for the expressivity of proof-theoretic assumptions; therefore it makes sense for us to

investigate syntactic finitism with regards to the kinds of metatheorems about typed

lambda calculi that, via Curry-Howard, imply consistency. Although examples of

such metatheorems abound, the most obvious are normalization theorems. One of

the most widely used class of mathematical structures for proving normalization

theorems, and consistency meta-theorems in general, is the class of logical relations.

Logical relations are usually defined as an infinite family of infinite sets, and thus

would appear to be incompatible with syntactic finitism; however, in Chapter 2, we

will give a finitary characterization of logical relations that we refer to as structural

logical relations. Because structural logical relations are syntactically finitary, they

14



can be implemented in Twelf (see http://www.twelf.org/slr for the source code),

thus solving a long-standing open problem [Abe08].

It should be noted that the existence of structural logical relations does not mean

that syntactic finitism can always be used to prove consistency outright; rather,

structural logical relations are syntactically finitary reductions from one consistency

theorem to another in much the same way that Karp reductions are polynomial-time

reductions from the computational complexity of one class of decision problems to

another. Thus, the proof theoretic assumptions that are usually implicitly taken for

granted in a typical proof by logical relations are made explicit in proof by structural

logical relations.

However, the question still remains as to when syntactic finitism can be used to

prove consistency outright. Just as finitism is sometimes considered to be formalized

by the first-order theory PA1 (i.e. Peano arithmetic where the principle of induction

is restricted to Σ1-formulas), in Chapter 3, we will argue that syntactically finitary

proofs can, in principle, be formalized in PA2 (i.e. Peano arithmetic where the prin-

ciple of induction is restricted to Σ2-formulas, or, equivalently, PA1 extended with a

notion of transfinite induction up to ωω). Thus, using some of the ideas and results

from proof theory, which will also be discussed in Chapter 3, syntactic finitism can

be associated with the proof-theoretic ordinal ωω
ω
. Because we associate the proof

assistant Twelf with the concept of syntactic finitism, we are able to use this ordinal

to give a direct bound on the expressivity of this proof-assistant, which is a novel

contribution. It follows as a corollary that proofs such as the consistency of Peano

Arithmetic and the weak normalization of Gödel’s T cannot be formalized directly

in Twelf, or any other formal system that accurately captures the notion of syntactic

finitism using the subterm ordering.

In Chapter 4, we will investigate the impact of extending our notion of syntactic
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finitism from induction on orderings built up from subterm orderings to induction on

those same orderings built up from the much stronger lexicographic path ordering of

term rewriting fame. We will see that using the lexicographic path ordering in this

context allows us to prove much more powerful theorems than would be possible in

the context of term rewriting. We provide an example of such a theorem—a novel

cut-elimination-like theorem that implies the weak normalization of Gödel’s T—in

Chapter 4. This proof has been formalized in a prototypical extension to Twelf based

on the lexicographic path ordering; see http://www.twelf.org/lpo.

Finally, we are also interested in formalizing the notion of syntactic finitism us-

ing methods that are more in the spirit of syntactic finitism than PA2. We regard

LF [HHP87] as providing a uniform means to express judgments, and the proofs-

as-logic-programs paradigm popularized by the proof assistant Twelf as a more syn-

tactic formalization of syntactic finitism than PA2. In Chapter 5, we will attempt

to justify this paradigm as a valid interpretation of syntactic finitism, and present

a novel syntactically finitary specification for the semantics of logic programming

in which unification is treated as a black-box; we then prove, using syntactically

finitary methods extended by a principle of well-founded induction, the soundness

of a judgmentally-specified mode/termination-analysis that is central to the inter-

pretation of logic programs as syntactically finitary proofs. The mode/termination

checker is modular in the ordering on LF terms, and thus can serve as a suitable

foundation for novel implementations of of the Twelf termination checker, such as

the lexicographic path ordering. Although such analyses, along with their proofs of

soundness, have been sketched in the past [RP96, Pie05], our full proof soundness of

soundness for a fully-specified mode/termination checker for a fully-specified seman-

tics of logic programming is a novel contribution. Moreover, if the mode/termination

is instantiated with the subterm ordering, then the soundness proof can, in princi-
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ple, be formalized in PA2 extended with the principle of transfinite induction up-to

ωω+1—or, equivalently, PA3—which is optimal with regards to the proof-theoretic

bounds described in Chapter 3.

In Chapter 6 we conclude by discussing related and future work.
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Chapter 2

Structural Logical Relations

A proof by logical relations (also sometimes referred to as Tait’s method) relies on an

interpretation of types as relations between objects. On paper, these interpretations

are usually formulated in set theory. Consider the simply typed λ-calculus, as defined

in Section 1.3. Given some property of expressions that we wish to reason about (e.g.

reducibility to a normal form), a unary logical relation [[τ ]] would be defined as the

smallest set satisfying the following conditions.

eo ∈ [[o]] iff eo has the desired property

eσ⇒τ ∈ [[σ ⇒ τ ]] iff for all eσ2 , if e2 ∈ [[σ]] then app eσ⇒τ eσ2 ∈ [[τ ]]

The hallmark characteristic of a logical relation is the definition at function types:

functions are in the relation if they map related arguments to related results. A

proof by logical relations typically proceeds in two stages: first, it is shown, usually

by induction on τ , that eτ ∈ [[τ ]] implies eτ has the desired property (we refer to this

as the Escape Lemma); then it is shown, usually by induction on eτ that, for every

e of type τ , e ∈ [[τ ]] (this is often referred to as the Fundamental Theorem or Basic

Lemma). The desired theorem is then a direct consequence of modus ponens.
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Taking a step back, we notice that the set-theoretic characterization of logical

relation relies on the following concepts: structural induction on τ and eτ , the ability

to express a desired property about λ-calculus terms, and connectives “for all” and

“if ... then.” Logical relations are typically formulated with the understanding that

these concepts all live on the same level. The idea of structural logical relations [SS08]

is to separate these concepts in such a way that we only need to employ syntactically

finitary reasoning: induction and case analysis on types and terms takes place on the

meta-level (as usual), whereas logical connectives and properties about λ-calculus

terms will be represented by an assertion logic, whose formulas and proof theory can

be described syntactically.

A paper proof of weak normalization for the simply typed λ-calculus using a

conventional, set-theoretic notion of logical relation can be found in [Pfe92]. A

proof using structural logical relations for the same property is described in [SS08].

We recount this proof and extended it to Gödel’s T here.

The overall structure of a proof by structural logical relations is much like its more

conventional set-theoretic counterpart: the Escape Lemma is proved by induction

on types, and the Fundamental Theorem is proved by induction on terms (although,

unlike conventionally defined logical relations, proving the Fundamental Theorem for

a structural logical relation does not require defining or reasoning about simultaneous

substitutions). However, structural logical relations require proving one theorem,

which we refer to as Extraction, that demonstrates the consistency of the assertion

logic; although conventional proofs using logical relations do not require an explicit

proof of the Extraction Theorem, we argue that this is because the act of defining

a conventional logical relation requires such a consistency theorem to be implicitly

assumed.
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2.1 Normalization of the Simply Typed λ-calculus

We are interested in proving weak normalization for the notion of βη conversion

defined in 1.3. We define two judgments for canonical and atomic forms of well-

typed terms eτ , written judgmentally as eτ ⇑ and eτ ⇓.

eo ⇓
can-o

eo ⇑

u
xσ ⇓

...

eτ ⇑
can-arrx,u

lam xσ. eτ ⇑

eσ⇒τ1 ⇓ eσ2 ⇑
atm app

app eσ⇒τ1 eσ2 ⇓

Informally, canonical forms are normal in the sense that they are β-short and η-long,

whereas atomic terms are variables applied to some number of canonical terms. It

should be noted that, although any term of the form eσ⇒τ , can always η-expanded to

(lam xσ.app eσ⇒τ xσ), if eσ⇒τ is canonical then (lam xσ.app eσ⇒τ xσ) will β-reduce

back to eσ⇒τ . Thus, although canonical terms can always be reduced, they can never

be reduced in an interesting way.

We aim to prove a theorem of the form “for all eτ , eτ reduces to a canonical

term.” Although it is straightforward express the property “eτ reduces to a canon-

ical term” syntactically (i.e. by defining a judgment whose sole inference rule has

premisses of the form eτ −→∗ e′τ and e′τ ⇑), this alone is not enough to capture

the potentially-nested logical connectives used to define a logical relation. Thus, we

define an assertion logic that is expressive enough to describe both the logical connec-

tives and, using atomic formulas, the property “can be converted to canonical form.”
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The formulas of the assertion logic for our example are defined by the following.

Formulas F,G ::= hcτ (eτ ) | haτ (eτ ) | whτ (eτ1 , e
τ
2) | F ⊃ G | ∀xτ .F

Predicates P,Q ::= F | (xτ .P )

Informally, we think of hcτ (eτ ) as meaning “eτ” has a normal form, haτ (eτ )

as meaning “eτ has an atomic form” and whτ (eτ1, e
τ
2) as meaning “eτ1 weak head

reduces to eτ2”; the logical connectives are intuitionistic. In general, we will omit

type superscripts from expressions and formulas when they can easily be inferred

from the context, or when they are irrelevant (e.g. hcτ (app e1 e2) or hc(app eσ⇒τ1 eσ2 )

instead of hcτ ((app eσ⇒τ1 eσ2 )τ )). A predicate is a formula with some number of

distinguished bound variables that can be thought of as place-holders for arbitrary

λ-calculus terms; if P is of the form xτ .P ′, then we write P (eτ ) to mean P ′[eτ/xτ ].

We formalize the notion of provability using sequents of the form Ψ ` F , where

Ψ is the notion of context defined below. We depart slightly from convention by

using Ψ to keep track of not only which logical hypotheses may be used freely in the

deduction of a sequent, but also which free λ-calculus variables may be used in the

deduction as well. Some of these variables are meant to represent arbitrary λ-calculus

terms (i.e. they are eigenvariables), and some are meant to represent arbitrary λ-

calculus variables (e.g. they can be assumed to be atomic). We distinguish the latter

from the former by adding a flag, vx
τ
, to the context. We also depart slightly from

convention by attaching names to the logical hypotheses in Ψ. Although doing so is

not useful in presenting the proof rules, it simplifies the presentation of proof terms

(i.e. the proof rules in BNF-style notation), which will be useful in Chapter 4. To

this end, we assume the existence of a (dependent) syntactic category of hypotheses,

whose only elements are hypothetical variables that we denote generically by hF .

Contexts Ψ ::= · | Ψ, hF | Ψ, xτ | vxτ
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In order for Ψ to be well formed, we require that each variable xτ or hF occurs in

Ψ at most once; this condition can typically be satisfied by tacitly renaming bound

variables. We sometimes abuse notation by writing Ψ,Ψ′ for the concatenation of

two contexts. We write Ψ ⊇ Ψ′ if Ψ can be obtained from Ψ′ by deleting some

number of declarations (we omit the inference rules for ⊇ for the sake of brevity).

Our rules are formulated in the style of Pfenning [Pfe95], itself similar to G3i of

[TS00]; the exact formulation of rules is immaterial to the applicability of our tech-

nique, although we feel that this presentation corresponds to an especially natural

notion of proof term. We depart slightly from convention by denoting the occurrence

of F in Ψ using the premiss hF ∈ Ψ (which can be expressed using inference rules in

the obvious way), rather than writing Ψ as Ψ′, hF ,Ψ′′; we feel that this presentation

makes the proof rules easier to read. The proof rules for the assertion logic are writ-

ten below.

Ψ ` haτ2⇒τ1(e1) Ψ ` hcτ2(e2)
ha-app

Ψ ` haτ1(app e1 e2)

Ψ, xσ, vx
σ ` hcτ (app e x)

hc-arr

Ψ ` hcσ⇒τ (e)

Ψ ` who(e, e′) Ψ ` hco(e′)
hc-wh

Ψ ` hco(e)

Ψ ` hao(e)
hc-atm

Ψ ` hco(e)
xτ ∈ Ψ vx

τ ∈ Ψ
ha-var

Ψ ` haτ (xτ )

wh-beta

Ψ ` whτ (app (lam x. e1) e2, e1[e2/x])

Ψ ` whτ2⇒τ1(e1, e
′
1)

wh-app

Ψ ` whτ1(app e1 e2, app e
′
1 e2)

Ψ, hF ` G
impr

Ψ ` F ⊃ G

Ψ ` F1 Ψ, hF2 ` G h′F1⊃F2 ∈ Ψ
impl

Ψ ` G

Ψ, xτ ` F
allr

Ψ ` ∀xτ .F

Ψ, hF [eτ/xτ ] ` G h′∀x
τ .F ∈ Ψ

alll

Ψ ` G
hF ∈ Ψ

axiom

Ψ ` F

We consider the rules hc-arr, impr, impl, allr and alll to be binders for the variables

introduced in the contexts of their subderivations. The informal description of the

meanings of the atomic formulas is justified by Lemma 2.1.2.
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Several of the proofs in this section are by induction over terms and derivations

that can potentially contain free variables. Sometimes, especially when we are in-

ducting over multiple different syntactic categories, we will need to be able to express

the relationship between the free variables of different syntactic categories. For ex-

ample, the below definition of variable contexts and compatible derivations of eτ ⇑

will be useful in the proof of Lemma 2.1.2.

Definition 2.1.1 (Variable Contexts, Compatible Canonicity Derivations)

We say that Ψ is a variable context iff the following judgment is inhabited.

· varctx
Ψ varctx

Ψ, xτ , vx
τ
varctx

We say that a derivation of the form D : (eτ ⇑) or D : (eτ ⇓) is compatible with a

context Ψ iff for every free inference-rule variable ux
τ⇓ in D, xτ ∈ Ψ and vx

τ ∈ Ψ.

The notion of compatible canonicity derivation can easily be formulated judgmentally;

we omit this definition for the sake of brevity.

Lemma 2.1.2 (Extraction on Cut-Free Proofs) For all Ψ, if Ψ is a variable

context then:

1. for all D : (Ψ ` hcτ (e)) there exists e′ such that e −→∗ e′ and E : (e′ ⇑) and E

is compatible with Ψ

2. for all D : (Ψ ` haτ (e)) there exists e′ such that e −→∗ e′ and E : (e′ ⇓) and E

is compatible with Ψ

3. for all D : (Ψ ` whτ (e1, e2)) there exists E : (e1 −→ e2) and E is compatible

with Ψ

Proof: By mutual induction on D in each case, using Theorem 1.3.1. �
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For practical reasons we will work with the assertion logic with cut. The judgment

Ψ `cut
F is defined by inference rules similar to the ones above except with `cut

instead

of `, plus one additional rule.

Ψ `cut
F Ψ, hF `cut

G
cut

Ψ `cut
G

The rules for defining the atomic formulas P vary for each structural logical relation.

We show later in the paper that the choice of inference rules cannot be arbitrary:

they must preserve some form of cut-elimination property of the sequent-calculus in

order to apply Lemma 2.1.2 in the proof of Extraction.

Returning to the definition of structural logical relations, we can now define the

logical relation judgmentally, in terms of a (unary) logical predicate.

[[o]] = (xo.hc(xo))

[[σ]] = Pσ [[τ ]] = Pτ

[[(σ ⇒ τ)]] = (xσ⇒τ .∀yσ.Pσ(yσ) ⊃ Pτ (app x
σ⇒τ yσ))

We are justified in treating [[τ ]] = P as a function by the following lemma.

Lemma 2.1.3 (Existence, Uniqueness of Logical Relation Predicate)

1. For every τ , there exists a predicate xτ .F such that [[τ ]] = xτ .F

2. If [[τ ]] = P and [[τ ]] = P ′ then P = P ′

Proof: Each case is by a straightforward induction on the structure of τ . �

Thus, eτ ∈ [[τ ]] and [[τ ]]eτ can both be viewed as shorthand for the formula F [eτ/xτ ]

where [[τ ]] = xτ .F .

Our structural logical relations argument is structured as follows.

1. For all τ , · `cut
[[τ ]](eτ ) ⊃ hc(eτ ). (Escape Lemma)
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2. For all eτ there exists D : (· `cut
[[τ ]](eτ )). (Fundamental Theorem)

3. If `cut
hc(eτ ) then there exists e′τ

such that eτ −→∗ e′τ and e′τ ⇑. (Extraction)

Note the distinction between the statement of 3 and Lemma 2.1.2; in order to bridge

the gap between the two, we will need to prove some sort of cut-elimination result.

Lemma 2.1.4 (Escape)

1. For all contexts Ψ and types τ , there exists D : Ψ `cut ∀xτ .[[τ ]](xτ ) ⊃ hc(xτ )

2. For all contexts Ψ and types τ , there exists D : Ψ `cut ∀xτ .ha(xτ ) ⊃ [[τ ]](xτ )

Proof: By mutual induction on τ .

Case: τ = o. Direct, by reasoning using the definition of [[τ ]] and rules allr, impr and

axiom in 1, and the same rules plus ha-var and hc-atm.

Case: τ = τ2 ⇒ τ1. By induction hypothesis, we can obtain derivations of the follow-

ing sequents.

Ψ `cut ∀xτ1 . [[τ1]](xτ1) ⊃ hc(xτ1) (2.1)

Ψ `cut ∀xτ1 . ha(xτ1) ⊃ [[τ1]](xτ1) (2.2)

Ψ `cut ∀xτ2 . [[τ2]](xτ2) ⊃ hc(xτ2) (2.3)

Ψ `cut ∀xτ2 . ha(xτ2) ⊃ [[τ2]](xτ2) (2.4)

1. Follows by induction hypotheses (2.1) and (2.4), using the definition of [[τ ]] and

rules allr, impr, alll, impl, cut, and hc-arr.

2. Follows by induction hypotheses (2.2) and (2.3), using rules allR, impR, allL,

cut, and ha-app.
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The following lemma will be needed to prove the Fundamental Theorem.

Lemma 2.1.5 (Closure Under Weak Head Expansion) For all contexts Ψ and

for all types τ , there exists D : Ψ `cut ∀xτ . ∀yτ . wh(xτ , yτ ) ⊃ [[τ ]](yτ ) ⊃ [[τ ]](xτ )

Proof: By induction on the structure of τ .

Case: τ = o. Direct, by the definition of [[τ ]] and rules allr, impr, axiom, and hc-wh.

Case: τ = τ2 ⇒ τ1. By induction hypothesis, we can obtain a derivation of

Ψ `cut ∀xτ1 . ∀e′τ1 . whτ1(e, e′) ⊃ [[τ1]](e′) ⊃ [[τ1]](e)

The claim follows from the definition of [[τ ]] and rules allr, impr, alll, impl, cut,

and wh-app.

�

The statement of the Fundamental Theorem does not rely on lifting the notion of

logical relations to simultaneous substitutions, but it does rely on lifting the notion of

logical relation to contexts, which plays a similar role in the proof of the fundamental

theorem as the notion of variable context played in the proof of Lemma 2.1.2.

Definition 2.1.6 (Contexts in the LR, Compatible λ-Calculus Terms) We say

that Ψ is in the logical relation iff the following judgment is inhabited.

· inLR

Ψ inLR [[τ ]] = P

(Ψ, xτ , hP (xτ )) inLR

We say that an expression eτ is compatible with Ψ iff all of the free variables in eτ

are declared in Ψ. This notion of compatible expression can be defined judgmentally,

although we omit its definition for the sake of brevity.
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Theorem 2.1.7 (Fundamental) For every eτ and for every Ψ, if Ψ is in the logical

relation and eτ is compatible with Ψ then [[τ ]] = P and Ψ `cut
P (eτ )

Proof: By induction on eτ .

Case: xτ

Ψ inLR and xτ is compatible with Ψ given

xτ ∈ Ψ by def of compatibility

hP (xτ ) ∈ Ψ and [[τ ]] = P

by a straightforward induction on Ψ inLR using xτ ∈ Ψ

Case: lam xσ.eτ

Ψ inLR and eτ is compatible with Ψ given

[[σ]] = Pσ by Lemma 2.1.3

(Ψ, xσ, hPσ(xσ)) inLR by rule

eτ is compatible with Ψ, xσ, hPσ(xσ) by def of compatibility

Ψ, xσ, Pσ(xσ) `cut
Pτ (e

τ ) and [[τ ]] = Pτ by IH

Ψ, xσ, Pσ(xσ) `cut
wh(app (lamxσ.eτ ) xσ, eτ ) by rule wh-beta

Ψ, xσ, Pσ(xσ) `cut ∀yτ .∀y′τ . wh(yτ , y′τ ) ⊃ Pτ (y
′τ ) ⊃ Pτ (y

τ ) by Lemma 2.1.5

Ψ `cut ∀yσ.Pσ(yσ) ⊃ Pτ (app (lam xσ.eτ ) yσ)

by rules allr, impr, cut, alll impl and axiom

and the renamability of bound variables

[[τ ]](lamxσ.eτ ) = ∀yσ.Pσ(yσ) ⊃ Pτ (app (lam xσ.eτ ) yσ)

Case: app eσ⇒τ1 eσ2

Ψ inLR and app eσ⇒τ1 eσ2 is compatible with Ψ given
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Ψ ` P1(eσ⇒τ1 ) and [[σ ⇒ τ ]] = P1 by IH on e1

P1 = (xσ⇒τ .∀yσ.Pσ(yσ) ⊃ Pτ (app x
σ⇒τ yσ))

and [[σ]] = Pσ and [[τ ]] = Pτ by inversion on [[σ ⇒ τ ]]

Ψ ` P2(eσ2 ) and [[σ]] = Pσ by IH on e2

P2 = Pσ by Lemma 2.1.3

Ψ ` Pτ (app eσ⇒τ1 eσ2 ) by rules cut, foralll, impl and axiom

�

Thus far, we have shown that for any well-typed eτ , we can produce a derivation of

· `cut
hc(eτ ) by applying the Fundamental Theorem, followed by the Escape Lemma,

followed by applications of the rules cut, foralll, and impl. However, we are not yet

done: Lemma 2.1.2 requires the proof of hcτ (e) to be cut-free; that is, the assertion

logic must be consistent. If we were willing to accept the consistency of the assertion

logic a priori, then we would be done. However, in this example, no additional

assumptions are necessary: we are able to prove cut elimination directly, using the

syntactically finitary procedure outlined in [Pfe95]. First, we prove that cut is an

admissible rule in the cut-free sequent calculus, then use this admissibility lemma to

prove full cut elimination.

It should be noted that, in the proof the following Lemma 2.1.8, we consider a

formula of the form F [eτ/xτ ] to be a subterm of ∀xτ .F , despite the fact that eτ

may in fact be considerably larger than xτ . We justify this heretofore undiscussed

property of the subterm ordering by noting that, although λ-calculus terms may

occur inside of formulas, the reverse does not hold, and thus λ-calculus terms cannot

meaningfully impact the structure of a formula. In general, we only consider the

terms from one syntactic category to be taken into consideration when considering

the size of terms from another syntactic category when the two syntactic categories
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are mutually-recursive. This assumption is made more mathematically precise in

Example 5.2.42.

Lemma 2.1.8 (Cut Admissibility) If D : (Ψ ` F ) and E : (Ψ, hF ` G) then

Ψ ` G

Proof: By induction on the lexicographic ordering of F , followed by the simulta-

neous ordering on the structure of D and E . See [Pfe95] for details. Because the

only proof rules for atomic formulas are all right-rules, the extra cases introduced

by our atomic propositions all fall into the category of (easy) “right commutative

conversions.’ �

Theorem 2.1.9 (Cut-elimination) For any Ψ, and for any D : (Ψ `cut
F ) there

exists E : (Ψ ` F )

Proof: By straightforward induction on the structure of D, using Lemma 2.1.8. �

Corollary 2.1.10 (Extraction) If · `cut
hcτ (e) then there exists e′ such that e −→∗

e′ and e′ ⇑

Proof: By Theorem 2.1.9 and Lemma 2.1.2 �

The following theorem summarizes all the work we have done so far. It shows

that the simply typed λ-calculus is weakly normalizing.

Theorem 2.1.11 (Weak Normalization) For any τ and for any (closed) eτ , there

exists e′τ , such that e′τ ⇑ and eτ −→∗ e′τ .

Proof: Direct, by Theorem 2.1.7, Lemma 2.1.4, the rules cut, alll, impl, axiom and

Corollary 2.1.10. �
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2.2 Normalization of Gödel’s T

Proofs by logical relations are popular in large part because they tend to scale well.

We believe that structural logical relations preserve this property. Here, we extend

our proof of weak normalization to Gödel’s T, an extension of the simply-typed λ-

calculus with terms for expressing natural numbers (i.e. zero and successor), and

primitive recursion operator for each type τ .1

eτ ::= . . . | zo | (s (eo))o | (rτ (e1
τ ) (e2

τ⇒o⇒τ ) (e3
o))τ

We will see that the definition of the logical relation is unchanged, as are most of

the theorems; however, in order to prove the Fundamental Theorem, we will need a

proof-theoretically non-trivial extension to the assertion logic.

The new reduction rules for Gödel’s T are defined below. As usual, we omit type

superscripts when they are easily inferred or irrelevant.

eo −→ e′o
red-s

s eo −→ s e′o
red-rz

rτ (e2
τ ) (e3

τ⇒o⇒τ ) (zo) −→ eτ2

red-rs

rτ e1 e2 (s e3) −→ app (app e2 (rτ e1 e2 e3)) e3

e1 −→ e′1
red-rc1

rτ e1 e2 e3 −→ rτ e
′
1 e2 e3

e2 −→ e′2
red-rc2

rτ e1 e2 e3 −→ rτ e1 e
′
2 e3

e3 −→ e′3
red-rc3

rτ e1 e2 e3 −→ rτ e1 e2 e
′
3

The definition of canonical and atomic forms must be updated for the new expres-

sions.

can-z

zo ⇑

eo ⇑
can-s

s eo ⇑

eτ1 ⇑ eτ⇒o⇒τ2 ⇑ eo3 ⇓
atm-r

rτ (e1
τ ) (e2

τ⇒o⇒τ ) (e3
o) ⇓

1This is a slight abuse of terminology: Gödel actually referred to something computationally
equivalent to these terms as computable functions of finite type, whereas his theory “T” was a
quantifier-free logic whose atomic formulas were equations between computable functions of finite
type [Göd58]. We justify ourselves by noting that the normalization of the former implies the
consistency of the latter, and vice versa.

30



The definition of multi-step reduction is unchanged, although we need to add the

following additional cases to the congruence theorem (Theorem 1.3.1).

Theorem 2.2.1 (Congruence of Multistep Reduction)

. . .

3. If eo −→∗ e′o then s eo −→∗ s e′o

4. If e1 −→∗ e1 and e2 −→∗ e2 and e3 −→∗ e3 then rτ e1 e2 e3 −→∗ rτ e′1 e′2 e′3

Proof: The statement and proofs of 1 and 2 are the same as Theorem 1.3.1. 3 is

by straightforward induction on the structure of the given derivation, and 4 is by

straightforward simultaneous induction on the structures of the given derivations. �

The definition of [[τ ]] for Gödel’s T is identical to the judgment defined in Sec-

tion 2.1 for the simply typed λ-calculus, as are the proofs of Lemma 2.1.3, the Escape

Lemma and Closure Under Weak Head Expansion, even though the notion of weak

head reduction must be expanded with the following rules.

Ψ ` wh(e3, e
′
3)

wh-rc

Ψ ` wh(rτ e1 e2 e3, rτ e1 e2 e
′
3)

wh-rz

Ψ ` wh((rτ e1 e2 z
o), e1)

wh-rs

Ψ ` wh((rτ e1 e2 (s e3)), (app (app e2 (rτ e1 e2 e3)) e3))

In addition, hc and ha need the following additional right rules.

hc-z

Ψ ` hc(zo)

Ψ ` hc(eo)
hc-s

Ψ ` hc(s eo)

Ψ ` hc(e1) Ψ ` hc(e2) ` Ψ ` ha(e3)

Ψ ` ha(rτ e1 e2 e3)

None of the above extensions to the assertion logic is at all problematic. However,

in order to prove the Fundamental Theorem, we will need to make an extension to

the assertion logic of non-trivial proof-theoretic strength in the form of the following
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left-rule for hco.

Ψ `cut
P (zo) Ψ, xo, hP (xo) `cut

P (s xo) Ψ, xo, hha(xo) `cut
P (xo)

Ψ, xo, yo, hwh(xo,yo)
1 , h

P (yo)
2 `cut

P (xo) Ψ, hP (eo) `cut
F h′hc

o(eo) ∈ Ψ
hcl

Ψ `cut
F

The rule hcl can be thought of as defining a catamorphism-like induction principle,

not on types or terms, but on proofs of hco(e): the predicate P plays the role of

induction hypothesis, and for each of the right rules that can be used to prove

hco(eo)—hc-z, hc-s, hc-atm and hc-wh—hcl has a minor premiss that plays the role

of induction case (we refer to Ψ, hP (eo) ` F as the major premiss). In other words, the

atomic predicate-symbol hco can be thought of as an inductive definition in the style

of Martin-Löf [ML71]. This should not come as a great surprise: in order to reason

about a λ-calculus with primitive recursion, we use an assertion logic with a notion of

iteration. In the absence of pairs, iteration and primitive recursion aren’t obviously

the same thing, so it should also come as no surprise that we find it convenient to

augment the assertion logic with conjunction.

Formulas F,G ::= . . . | F ∧G

Ψ `cut
F Ψ `cut

G
andr

Ψ `cut
F ∧G

Ψ, hF `cut
G h′F∧G ∈ Ψ

andr1

Ψ `cut
F ∧G

Ψ, hG `cut
G h′F∧G ∈ Ψ

andr2

Ψ `cut
F ∧G

The fundamental theorem is mostly the same as before, but with some new cases,

one of which relies on the Escape Lemma. For the sake of convenience, we prove that

weakening is an admissible rule for the assertion logic; the other structural rules will

be useful in Chapter 4.

Lemma 2.2.2 (Structural Rules for the Assertion Logic)
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(Weakening) If D : (Ψ `cut
F ) and E : (Ψ′ ⊇ Ψ) then Ψ′ `cut

F

(Exchange) If Ψ, hG, h′G
′
,Ψ′ `cut

F then Ψ, h′G
′
, hG,Ψ′ `cut

F

(Contraction) If Ψ0, h
G,Ψ1, h

′G,Ψ2 `
cut
F then Ψ0, h

G,Ψ1,Ψ2 `
cut
G and

Ψ0,Ψ1, h
′G,Ψ2 `

cut
F

(Substitution) If Ψ, xτ ,Ψ′ `cut
F and fv(eτ ) ⊆ Ψ then Ψ,Ψ′[eτ/x] `cut

G[eτ/xτ ]

Proof: Weakening is by straightforward induction on the structure of D, where the

axiom case is proven by a straightforward induction on the structure of E ; Exchange,

contraction and substitution are straightforward inductions on the given derivations.

�

Recall that definitions of Ψ inLR and the compatibility of eτ with Ψ have not

changed from Definition 2.1.6.

Theorem 2.2.3 (Fundamental) For every eτ and for every Ψ, if Ψ is in the logical

relation and eτ is compatible with Ψ then [[τ ]] = P and Ψ `cut
P (eτ )

Proof: Exactly the same as Theorem 2.1.7 (i.e. by induction on eτ ), but with new

cases. We show them below.

Case: zo

Ψ inLR and zo is compatible with Ψ given

[[o]] = xo.hc(xo) by def of [[o]]

Ψ `cut
hc(zo) by rule hc-z

Case: s eo
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Ψ inLR and s eo is compatible with Ψ given

eo is compatible with Ψ by def of compatible

Ψ `cut
P (eo) and [[o]] = P by IH on e

P = xo.hc(xo) by inversion on [[o]]

Ψ `cut
hc(s eo) by rule hc-s

Case: rτ (e1
τ ) (e2

τ⇒o⇒τ ) (e3
o)

Ψ inLR and rτ (e1
τ ) (e2

τ⇒o⇒τ ) (e3
o) is compatible with Ψ given

D1 : (Ψ `cut
P1(eτ1)) and [[τ ]] = P1 by IH on eτ1

D2 : (Ψ `cut
P2(eτ⇒o⇒τ2 )) and [[τ ⇒ o⇒ τ ]] = P2 by IH on eτ⇒o⇒τ2

P2 = xτ⇒o⇒τ2 .∀xτ1.Pτ (xτ1) ⊃ ∀xo3.hc(xo3) ⊃ Pτ (app (app xτ⇒o⇒τ2 xτ1) xo3)

and [[τ ]] = Pτ by inversion on [[τ ⇒ o⇒ τ ]] = P2

P1 = Pτ by Lemma 2.1.3

E0 : (Ψ, h′hc(e3) `cut ∀xτ .∀yτ .wh(xτ , yτ ) ⊃ Pτ (y
τ ) ⊃ Pτ (x

τ ))

by Lemma 2.1.5

E1 : (Ψ `cut ∀xτ .Pτ (xτ ) ⊃ hc(xτ )) by Lemma 2.1.4 (1)

E2 : (Ψ `cut ∀xτ .ha(xτ ) ⊃ Pτ (x
τ )) by Lemma 2.1.4 (2)

E3 : (Ψ `cut ∀xτ⇒o⇒τ .P2(xτ⇒o⇒τ ) ⊃ hc(xτ⇒o⇒τ )) by Lemma 2.1.4 (1)

let P = xo.(Pτ (rτ (e1
τ ) (e2

τ⇒o⇒τ ) (xo)) ∧ hc(xo)) (convenient definition)

Ψ, h′hc(e3) `cut
P (zo)

by rules andr, cut, alll, impl, axiom, wh-rz, hc-z

and Lemma 2.2.2 on E0 and D1

Ψ, h′hc(e
o
3), xo, hP (xo) `cut

P (s xo)

by rules andr, cut, alll, impl, andl1, andl2, axiom, hc-s

and Lemma 2.2.2 on E0 and D2

Ψ, h′hc(e
o
3), xo, hha(xo) `cut

P (xo)
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by rules andr, cut, alll, impl, ha-r, hc-atm

and Lemma 2.2.2 on E1,D1, E3,D2 and E2

Ψ, h′hc(e
o
3), xo, yo, h

wh(xo,yo)
1 , h

P (yo)
2 `cut

P (xo)

by rules andr, cut, alll, impl, wh-rc, axiom, andl1, hc-wh, andl2

and Lemma 2.2.2 on E0

Ψ, h′hc(e
o
3), hP (eo3) `cut

Pτ (rτ (e1
τ ) (e2

τ⇒o⇒τ ) (e3
o))

by rules andl1 and axiom

Ψ, h′hc(e
o
3) `cut

Pτ (rτ (e1
τ ) (e2

τ⇒o⇒τ ) (e3
o)) by rule hcl

Ψ `cut
hc(eo3) by IH on eo3 by IH on eo3 and def of [[o]]

Ψ `cut
Pτ (rτ (e1

τ ) (e2
τ⇒o⇒τ ) (e3

o)) by rule cut

�

As before, all that remains to be proven is the Extraction theorem for the assertion

logic. However, as we shall see in Chapter 3, the syntactically finitary methods

that we have considered thus far are simply too weak to prove such a theorem. In

Chapter 4, we will see how syntactic finitism can be extended such that this difficulty

can be overcome.
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Chapter 3

Ordinal Analysis

In the previous chapter, we demonstrated that structural logical relations can be

viewed as syntactically finitary reductions from one sort of consistency theorem (e.g.

normalization for a typed λ-calculus) to another (the extraction theorem for an

assertion logic with cut). In the case of the simply typed λ-calculus, syntactically

finitary methods are enough to prove the relevant extraction theorem directly, and

thus normalization can be proved outright. In general this is not always be the case.

For example, we have seen that structural logical relations can be used to perform a

similar reduction for Gödel’s T, but, as we shall see, the syntactically finitary methods

outlined thus far are simply too proof-theoretically weak to prove the normalization

of Gödel’s T outright. We will demonstrate this point semi-formally, using some of

the ideas and results from the branch of proof theory known as ordinal analysis, in

which consistency theorems are finitistically reduced to well-ordering theorems for

natural systems of ordinal notations (see [Rat06] for a good introduction to the field).

Many of the theorems in this chapter employ techniques that go well beyond what

we consider to be syntactically finitary, although we will attempt to remain as true

to the spirit of syntactic finitism as possible.
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3.1 An Introduction to Ordinals

In mathematics, as in linguistics, the distinction between cardinal and ordinal num-

bers is the distinction between quantity and order; in English, the words one, two

and three are cardinal numbers, whereas first, second and third are ordinal numbers.

In mathematics, the distinction is somewhat analogous; cardinal numbers denote

size, whereas ordinal numbers denote well-orderings.

Below we informally describe the intuition behind some of the basic ordinals, and

ordinal operations, that we consider important for this dissertation. A more formal

development of much of this material can be found in [Gal91], or, alternatively, nearly

any textbook on set theory or proof theory (e.g. [Kun80, TS00]).

3.1.1 Ordinal Arithmetic

Consider the syntactic category of even and odd natural numbers, as defined below.

Even Numbers E ::= zero | plustwoeven E

Odd Numbers O ::= one | plustwoodd O

Natural Numbers with Parity N ::= E | O

Clearly, the syntactic categories E, O, N , and n (defined in Section 1.1) all have

the same cardinality, since there are obvious bijections between each of them. In

particular, N can be viewed as a natural alternative to n: the two syntactic categories

are clearly intended to represent the same concept. Under the subterm orderings

for n, E and O—written <, <E and <O, respectively—these syntactic categories

are clearly order-isomorphic as well; their order-type—that is, the name for this

equivalence class of total well-orderings on syntactic categories—is usually denoted

using the symbol ω. An ordinal is a canonical element of an order type; for the

purposes of this exposition, we conflate these concepts somewhat by referring to
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order-types and ordinals with the same names.

Consider the following ordering relation <N on N , as defined below.

E <E E
′

E <N E′

O <O O
′

O <N O′ E <N O

The relation <N is clearly a well-ordering: any strictly monotonically decreasing

sequence of Es and Os is finite, and any strictly monotonically decreasing sequence

of N ’s can be split into a sequence of Os followed by a sequence of Es. If we were to

make an analogy to type theory, N can be thought of as the sum-type E+O, where

<N is the lifting of <E and <O to <E+O by arbitrarily declaring terms tagged by

inl to be smaller than terms tagged by inr. In the realm of ordinals, this operation

defines ordinal addition, and where the order type of N under <N is usually denoted

ω + ω or as ω · 2. Because there is an order-preserving embedding of ω into ω + ω,

but not vice-versa, we think of ω as being smaller than ω+ω in much the same way

that we would consider the syntactic category E to be smaller than the syntactic

category N . We overload the symbols <, ≤ and =—normally reserved for comparing

natural numbers—to refer to this comparison of ordinals as well; the relation < is

both total and well-founded.

In some ways, ordinal addition behaves similarly to addition on natural numbers;

it is associative, and the uninhabited syntactic category false, whose order type

is usually written using the symbol 0, is the identity element for this operation.

Moreover, the syntactic category true, whose sole element is 〈〉, has an order type

usually denoted using the symbol 1, and behaves much like the natural number of the

same name. In general, any natural number n corresponds to a finite ordinal that

can be written

n times︷ ︸︸ ︷
1 + . . .+ 1. The finite ordinals behave exactly the same under ordinal

addition (defined above) and ordinal multiplication (defined below) as the natural

numbers do under arithmetic addition and multiplication (thus we occasionally treat
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one as though it were the other for the sake of convenience). However, this analogy

only takes us so far: in general, ordinal addition is not commutative. For example,

1 +ω is equal to ω (consider the bijective, order-preserving function that maps inl 〈〉

to z, and inr n to s n), but ω + 1 is not.

Every ordinal which is neither 0 nor a successor ordinal (i.e. can be written α+1)

is defined to be a limit ordinal. In general, every limit ordinal can be described as

smallest ordinal that is strictly larger than every element of a strictly increasing,

infinite sequence of ordinals. For example, the ordinal ω is the limit of the sequence

0, 1, 2, . . .; the ordinal ω+ω is the limit of the sequence ω, ω+1, ω+2, . . .; the ordinal

ω + ω + ω is the limit of the sequence ω + ω, ω + ω + 1, ω + ω + 2, . . .; etcetera. In

general each limit ordinal can be associated with a canonical fundamental sequence1

, although the exact definition of fundamental sequence varies depending on the

presentation; we write the nth element of the fundamental sequence for α as α[n].

We have already seen what the fundamental sequences look like for ω, ω+ω, ω+ω+ω,

etc. The notion of ordinal multiplication will allow us to define the ordinal ω · ω,

whose fundamental sequence is defined as (ω · ω)[n] =

n times︷ ︸︸ ︷
ω + . . .+ ω = ω · n.

The ordinary, arithmetic notion of multiplication can be defined in terms of re-

peated addition. The same is true for ordinal multiplication, but we prefer to de-

scribe its behavior as a primitive notion. Given any two syntactic categories A and

B, we can define a syntactic category whose sole term constructor is 〈A;B〉; such

a construction is analogous to the product-type A × B. We can use the notion of

lexicographic ordering, discussed in Section 1.2, to lift well-orderings <A (on terms

in A) and <B (on terms in B) to <lex (on terms in A × B). This is formalized by

1In general, it will be possible to describe the fundamental sequences for all of the ordinals dis-
cussed in this document syntactically, where the notion of fundamental sequence can be formalized
as syntactically finitary, deterministic, strictly increasing functions from the natural numbers to
the ordinals.
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the judgments below.

A <A A
′

〈A;B〉 <lex 〈A′;B′〉

A = A′ B <B B′

〈A;B〉 <lex 〈A′;B′〉

As we have already discussed in Section 1.2, we view the well-foundedness of lexico-

graphic combinations of orderings as being a priori justified. As it turns out, this

use of the lexicographic ordering corresponds to ordinal multiplication: <A has order

type α, and <B has order-type β, then <lex, as defined above, has order type β · α

(note the swap in the placement of α and β). As is the case with ordinal addition,

ordinal multiplication is associative but not commutative; 2 · ω is equal to ω, but

ω · 2 is not. Ordinal multiplication distributes over addition on the right, but not on

the left: for any α and β, α · (β1 + β2) = α · β1 +α · β2, but, as we have already seen,

(1 + 1) · ω = ω 6= ω · (1 + 1).

The definition of ordinal exponentiation, βα, is considerably more complex than

ordinal addition or multiplication. However, for our purposes, it suffices to consider

only exponentiation at base ω. Given a syntactic category A and the total, well-

founded ordering <A, let L be a syntactic category of A-lists, whose elements are

sorted in descending order according to <A. We can lift the ordering <A to <L

via a slight generalization of the lexicographic order: the empty list is smaller than

all non-empty lists, and two non-empty lists are ordered lexicographically by their

heads under <A, followed by their tails under <L. If <A has order-type α, then <L

has order-type ωα. If we eliminate the assumption that < is a total ordering, and

eliminate the restriction that L’s lists must be sorted, then, by treating these unsorted

lists as multisets, lifting <A to <L via the multiset ordering [DM79] has order-type ωα

as well [HK91]. Ordinal exponentiation has some of the basic properties of ordinary

exponentiation: ω0 = 1, ω1 = ω and for every α and β, ωα · ωβ = ωα+β and

(ωα)β = ωα·β.
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We find it useful to define the iterated exponentiation function ωn as follows.

ω0 = 1

ωn+1 = ωωn

This definition is more or less standard, except that some authors prefer to define

ω0 to be 0 or ω. Regardless of the convention adopted, the function that maps n to

ωn can be used as the fundamental sequence for an ordinal that is usually denoted

by the symbol ε0, which will be discussed in greater detail in subsequent sections.

3.1.2 Ordinal Notation Systems

An ordinal notation system is essentially just a syntactic category coupled with a

transitive, total, well-founded ordering, whose terms are intended to give names

to ordinals. We do not require that the well-foundedness of such an ordering to be

proven outright, although we do require that the totality, transitivity and decidability

of the ordering can be proven using syntactically-finitary methods.

For example, we have already seen how the terms of the syntactic categories n,

E, and O, coupled with the subterm orderings <,<E and <O, can be used to give

names to the finite ordinals, whereas these notation systems themselves have order

type ω. Similarly, the terms in the syntactic category N , coupled with the ordering

<N , can give names to both the finite ordinals and ordinals of the form ω+n, whereas

the order-type of this notation system is ω + ω. In general, the order type of any

ordinal notation system will be the supremum of all of the ordinals named within the

notation system. Note that this means that no ordinal notation system can provide

a name for every ordinal: otherwise, the order-type for such a notation system would

be strictly larger than itself, leading to a contradiction known as the Burali-Forti
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paradox. Thus, every ordinal notation system is necessarily incomplete.

The following theorem, due to Georg Cantor, is useful in helping us to define

ordinal notation systems.

Theorem 3.1.1 (Cantor Normal Form) For every non-zero ordinal α, there ex-

ist ordinals α1 . . . αn such that α ≥ α1 ≥ . . . ≥ αn and α = ωα1 + . . .+ ωαn

Note that the Cantor Normal Form theorem does not contradict the Burali-Forti

paradox; using symbols for 0, ordinal addition, and ordinal exponentiation at base

ω, we can define a notation system for any ordinal α whose representation in Cantor

normal form (CNF), satisfies α > α1 ≥ . . . ≥ αn (although the notion of equality over

the ordinals in this notation system is more nuanced than just syntactic equality).

However, such an ordinal notation system cannot represent any of the ε-numbers, that

is ordinals that are fixed-points of the equation α = ωα. In fact, the order-type for

this notation system is the smallest ε-number, ε0. The ordinal ε0 plays an important

role in the proof-theoretic analysis of number theory, described in Section 3.2.1.

However, there is nothing to stop us from adding a symbol for ε0 to the ordinal

notation system described above: the resulting notation system would have order

type ε1, i.e. the next-smallest fixed-point of α = ωα after ε0. Similarly, if we then

add a symbol for ε1, the resulting ordinal notation system would have order-type ε2,

and so forth and so on. Adding all of the symbols εn, where n is a finite ordinal,

would result in an ordinal notation system whose order-type is εω. Adding a symbol

for εωwould have order type εω+1, and so forth and so on. But what about the

ordinals that are fixed-points of the equation α = εα?

Clearly we can continue this process indefinitely. To this end, we can define the

(binary) Veblen function ϕα(β) (sometimes written ϕ(α, β)) informally, as follows.

We define ϕ0(β) to be ωβ and ϕα+1 is the function that iterates over the fixed-points
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of ϕα. Thus, we can write εα as ϕ1(α). If α is a limit ordinal, then ϕα is function

that iterates over the ordinals that are fixed points of all of the functions of the

form ϕα′ , where α′ < α. We can, using a symbol for the Veblen function, along

with symbols for 0 and ordinal addition, define an ordinal notation system which is

much more expressive than anything we have considered thus far. The order-type

of this ordinal notation system is referred to as the Feferman-Schütte ordinal, and

is typically denoted using the symbol Γ0 (see [Gal91] for a more formal development

of the ordinals up to Γ0). The Veblen function can be generalized to operate on n

arguments, for some fixed number n ≥ 2; the supremum of the order-types of the

resulting ordinal-notation systems is referred to as the small Veblen ordinal [Mos04].

The small Veblen ordinal is the largest ordinal that we are interested in for the

purposes of this dissertation.

3.2 Ordinals in Proof Theory

Given an ordinal notation systemO, whose order type is α, the principle of transfinite

induction up to α is the principle of well-founded induction applied to the well-

ordering of O, but not the order-type of O itself (e.g. the principle of transfinite

induction up to ω is just the ordinary principle of mathematical induction). Note that

we do not necessarily consider the principle of transfinite induction to be syntactically

finitary, but we can consider the effect of extending syntactically finitary reasoning

with transfinite induction.

3.2.1 Gentzen’s Theorems

This sort of consideration is well precedented. As we have already discussed, it is

a consequence of Gödel’s second incompleteness theorem that, in general, proofs

43



of logical consistency reduce one set of proof-theoretic assumptions to another. In

1936 Gerhard Gentzen published a consistency proof for a natural-deduction style

formulation of classical first-order arithmetic, using a combination of finitary methods

and transfinite induction up to ε0 (using an ordinal-notation system based on lists

of numbers) [Gen36]. In 1938, Gentzen presented a refined version of this result,

this time for a sequent calculus formulation of first-order arithmetic and using the

ordinal notation system for ε0 based on CNF described in Section 3.1.2 [Gen38].

Both proofs proceed roughly as follows: using finitary methods, any proof of a

contradiction ( ` 1 = 2 in [Gen36], · ` · in [Gen38]) can be assigned an ordinal

measure, and, again using finitary methods, any such proof can be reduced in such

a way that this ordinal measure decreases; thus, by transfinite induction, any proof

of a contradictory statement can be reduced to a proof of size 0, and it can easily

be seen via case-analysis that no such proof exists. Gentzen argued that finitary

methods must be considered valid beyond any reasonable doubt, meaning that the

consistency of arithmetic can be reduced to believing in the principle of transfinite

induction up to ε0.

Gentzen did not provide a formal system to capture what he meant by “fini-

tary methods,” but from his description it is clear that he was referring to a small,

constructive subset of the principles formalized by first-order arithmetic. In the in-

tervening years, it has been argued, most prominently by Tait, that the concept of

finitism is captured by the quantifier-free theory of primitive recursive arithmetic,

PRA [Tai81] (although [Rat06] observes that Gentzen’s results can be formalized in

terms of elementary recursive arithmetic, which is even weaker than PRA). In general,

Gentzen’s formulations of classical first-order arithmetic are essentially equivalent to

the formal system now referred to as Peano arithmetic (PA), and, every theorem

of PRA can be proven in a fragment of Peano arithmetic, PA1, where induction is
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restricted to Σ1-predicates (and, as it turns out, vice-versa [Par66, Min73a]).

Definition 3.2.1 (Fragments of Peano Arithmetic) The system PAn is the usual

first-order formulation of Peano arithmetic in which the induction schema is re-

stricted to Σn (or, equivalently, Πn) formulas when written in prenex normal form.

Thus, Gentzen’s 1936 and 1938 results can be summarized as follows, where

TI1(ε0) is the principle of transfinite induction up to ε0 restricted to Σ1-predicates,

and CON(PA) is the encoding of the statement “Peano arithmetic is consistent”

within PA.

PA1 + TI1(ε0) ` CON(PA)

Thus, by Gödel’s second incompleteness theorem, if we believe that PA is consistent,

then we must also believe the following.

PA 0 TI1(ε0)

In 1943, Gentzen proved, again using only finitary methods, that for any ordinal

α that is strictly smaller than ε0, the principle of transfinite induction up to ωα on

formulas of degree n can be replaced with the principle of transfinite induction up to

α on formulas of degree n+ 1 [Genb] (Gentzen defined the degree of a formula to be

the total number of logical connectives, although it has been shown that this result

holds even when “degree” is defined to be the number of quantifier-alternations the

formula has in prenex normal form; see Theorem 3.2.6). Thus, by induction on the

structure of α (as represented in CNF), the principle of transfinite induction up to

any fixed ordinal α < ε0 is an admissible rule in first-order arithmetic. This result

can be summarized as follows.

PA ` TI1(< ε0)

In other words, by the 1936 and 1938 results, ε0 is an upper bound on the

provable well-orderings of first-order arithmetic, and by the 1943 result, this bound
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is precise. Thus, the ordinal ε0 is sometimes referred to as the proof theoretic ordinal

of arithmetic. The branch of proof theory known as ordinal analysis concerns itself

primarily with finding the proof theoretic ordinals of various logical theories, where

the expressivity of different theories can usually be accurately compared in terms

of the size of their proof theoretic ordinals. However, we do have to be careful:

the definition of a proof-theoretic ordinal for a given theory depends on the ordinal

notation system used, although this is rarely a complication for any natural2 ordinal

notation system. [Rat07]

3.2.2 Ordinal Recursive Hierarchies

In Section 1.2, we saw how structural induction can be used to prove the totality of

functions such as add, and how induction on a lexicographic ordering can be used

to prove the totality of functions such as ack; the induction orderings used in these

proofs have order type ω and ω2, respectively. In general, the principle of transfinite

induction up to α can also be used to prove the totality of functions; we refer to such

an application of transfinite induction up to α as transfinite recursion up to α.

We define two ordinal-recursive hierarchies of functions below. Recall that we

write α[n] for the nth element of the limit ordinal α’s fundamental sequence.

Definition 3.2.2 (Fast Growing Hierarchy) For a given ordinal notation sys-

tem of order-type α, we define the fast-growing hierarchy at Fα to be the class of

number-theoretic functions fβ defined by transfinite recursion up to α.

2As with the notion of “consistent logic,” we cannot define what it means for an ordinal notation
system to be “natural,” but we know it when we see it. For example, it is possible to use an ordinal
notation system of order type ω2 to prove the consistency of PA; this ordering would make direct
reference to the first order predicate “the Gödel numbering of F is provable in PA” in such a
way that the the consistency of PA is directly implied by the well-foundedness of this ordering
[Rob65, Rat07]. We do not consider such an ordinal notation system to be natural.

46



f0(n) = s n

fβ+1(n) =

n times︷ ︸︸ ︷
(fβ ◦ . . . ◦ fβ)(n)

fβ(n) = fβ[n](n) if β is a limit ordinal

where ◦ denotes function composition, and the ellipses can be eliminated by defining

an auxiliary function that is primitive recursive on n.

Definition 3.2.3 (Hardy Hierarchy) For a given ordinal notation system of order-

type α, we define the Hardy hierarchy at Hα to be the class of number-theoretic

functions hβ defined by transfinite recursion up to α.

h0(n) = n

hβ+1(n) = hβ(s n)

hβ(n) = hβ[n](n) if β is a limit ordinal

Although the definitions of the fast growing and Hardy hierarchies depend on the

exact definition of fundamental sequence, for the ordinals up to ε0 (and, to a lesser

extent, Γ0) the definition of fundamental sequence is standard.

It is worth mentioning that the function that maps n to ack(n, n) (as defined

in Section 1.2) grows roughly at the same rate as fω and hωω (folklore), and that

the Ackermann function “grows faster” than any primitive recursive function (also

folklore; see [Sza93] for a syntactically finitary proof) in the following sense.

Definition 3.2.4 We say that a number-theoretic function f majorizes the number-

theoretic function g iff there exists some n such that, for every m > n, f(m) > g(m).

The following theorem demonstrates some interesting properties of the Hardy

and fast growing hierarchies.
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Theorem 3.2.5 For any α < ε0

1. for any n, fα(n) = hωα(n)

2. for any n,m, if n < m then hα(n) < hα(m) and fα(n) < fα(m)

3. for any β if β < α then hα majorizes hβ, and fα majorizes fβ

Proof: Each is by transfinite induction up to α. See [BW87] for details. �

In Section 1.2, we saw that functions can be defined syntactically by first giv-

ing judgmental definitions of their defining equations, then by using case analysis

and induction to prove totality. In first-order theories, such as Peano arithmetic,

the provably functions are characterized similarly. A function f can be repre-

sented by an atomic predicate-symbol Pf , where f ’s defining equations f(inputs) =

outputs are axioms (usually expressible as Horn clauses) for formulas of the form

Pf〈inputs; outputs〉; in general Pf need not be atomic so long as its prenex normal

form is at most Σ1, and the defining equations for f need not be axioms, so long

as Pf〈inputs; outputs〉 is provable iff f(inputs) = outputs. For example, addition

(defined judgmentally in Section 1.1) could be represented in Peano arithmetic by a

tertiary atomic predicate symbol add, whose axioms would be ∀x.∀y.add(z; x; x) and

∀x1.∀x2.∀y.add(x1; x2; y) ⊃ add(s x1; x2; s y); similarly, the function 3×x could then

be represented by the binary predicate x.y.∃y′.add(x; x; y′) ∧ add(x; y′; y). Given

such a representation, we say that f is provably total in a first order theory iff the

formula ∀inputs.∃outputs.Pf〈inputs; outputs〉 can be proved.

Ordinal recursive hierarchies can sometimes be used to characterize the provably

total functions of a given logical theory, where ordinal notation systems can either

be defined to be part of the term-algebra for the logic, or else are defined in terms of

Gödel-numbering. The following statements provide examples. Recall the definition
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of ωn from the end of Section 3.1.1. Note that the principle TI1(ω) is equivalent to

the ordinary principle of mathematical induction restricted to Σ1-formulas (e.g. PA1

+ TI1(ω) = PA1).

Theorem 3.2.6 (Ordinal Hierarchies and Fragments of PA)

1. [BW87]

(a) For every α < ε0, fα and hα are provably total in PA.

(b) If f is a provably total function in PA, then f is majorized by both hε0

and fε0.

2. [Min73a, CR91]

(a) For every n, PA1 + TI1(ωn+2) ` CON(PAn+2)

(b) For every n, PAn+1 ` TI1(ωn+1)

3. [CR91]

(a) [Par66] For every α < ωn+1, fα and hωα are provably total in PAn+1.

(b) If f is a provably total function in PAn+1, then f is majorized by both

fωn+1 and hωn+2.

4. [Min73a, CR91] For any α < ε0, (PAn+2 + TI1(α)) can prove the same theo-

rems as (PAn+1 + TI1(ωα))

Proof: The proofs are nontrivial. Some of them (e.g. [BW87, CR91]) make essential

use of the infinitary inference rule known as the ω-rule, popularized by Kurt Schütte.

` P (0) ` P (1) ` P (2) . . .
ω-rule

` ∀x.P (x)
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Although this practice appears on the surface to be outside of the realm of the

finitary, infinitary proof-theoretic analyses can, in general, be given (syntactically)

finitary presentations [Buc91]. �

The above theorem, combined with the one below, will have interesting conse-

quences with regards to the provability of the Extraction theorem for the assertion

logic defined in Section 2.2.

Theorem 3.2.7 (Gödel’s T and ε0)

1. For every eτ in Gödel’s T, the function that normalizes eτ is ε0-recursive.

2. For every number-theoretic function f that is provably total in PA, f can be

represented as a term in Gödel’s T.

Proof: 1 can be proved by a non-trivial assignment of ordinals smaller than ε0 to

terms [How70, Sch77] (the former is for a formulation of Gödel’s T similar to ours,

the latter is in terms of combinators). 2 follows from a double-negation translation

from classical first-order arithmetic into intuitionistic first-order arithmetic followed

by Gödel’s Dialectica [Göd58] transformation; see [AF98] for more detail. �

3.2.3 Syntactic Finitism and PA2

In Chapter 1, we argued that the notions of abstract syntax and hypothetical judg-

ment should be granted the same epistemic status by programming languages re-

searchers as the natural numbers are granted by mathematicians. However, strictly

speaking, the difference between the former and the latter is a matter of conve-

nience, rather than expressivity. In general, abstract syntax trees and derivations

can be represented by natural numbers via primitive recursive Gödel numberings.
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Thus, manipulating well-formed terms and derivation trees via case-analysis and the

application of inference rules can be formalized in PA1.

We have taken the perspective that substitutions on higher-order derivations are

a priori well-defined, or, alternatively, can be proven to be well-defined using syntac-

tically finitary methods. When manipulating the Gödel numberings of hypothetical

judgments, we have no choice: substitution must be defined and reasoned about ex-

plicitly. Fortunately, substitution is, in general, a primitive recursive operation, and

thus can also be formalized in terms of Gödel numbers within PA1.

In general, we view the concept of induction to be syntactically finitary only

when it is used to transform arbitrary terms/derivations of given syntactic cate-

gories/judgments into terms and derivations of potentially different forms. In other

words, syntactically finitary inductions define functions from tuples of derivations to

tuples of derivations. In the language of first-order arithmetic, this would correspond

to proving a sentence of the following form.

∀x.x is a Gödel numbering for (D1, . . . ,Dn) ⊃ ∃y.y is a Gödel numbering for (E1, . . . , Em)

In general, such proofs follow by induction on x with an induction hypothesis of the

following form, which is classically equivalent to a Σ1-predicate.

x.(x is a Gödel numbering for (D1, . . . ,Dn) ⊃ ∃y.y is a Gödel numbering for (E1, . . . , Em))

Every proof of every theorem in Chapters 1, 2, 4 and 5 follow this template, albeit

for potentially different instances of the induction principle. Thus far, we have only

allowed syntactically finitary proofs to use induction metrics to be built up from

lexicographic orderings3 applied subterm orderings. Subterm orderings have order-

type at most ω, and lexicographic orderings correspond to ordinal multiplication,

3Recall that any use of the simultaneous ordering can be replaced with a use of the lexicographic
ordering.
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meaning that any one syntactically finitary proof may use an induction principle of

the form TI1(ωn), and thus the class of syntactically finitary proofs use an induction

principle no stronger than TI1(ωω). This characterizes all of the proofs of all of the

theorems in Chapter 2 and Chapter 5, save Theorem 5.2.62, which is modular in the

order type of its induction metric. Thus, all such proofs can be formalized in the

system PA1 + TI1(ωω).

By Theorem 3.2.6, PA1 + TI1(ωω) is equivalent to PA2, which has a proof-

theoretic ordinal ωω
ω
. With this in mind, we can use Gödel’s second incompleteness

theorem along with some of the theorems of Section 3.2.2 to prove the following

theorem.

Theorem 3.2.8 (The Outer Limits of Syntactic Finitism) The following state-

ments are true for the notion of syntactic finitism in which induction is restricted to

lexicographic orderings built from subterm orderings.

1. Any proof of the consistency of first-order arithmetic is not syntactically fini-

tary.

2. The function that realizes any syntactically finitary proof is majorized by hωωω

and fωω .

3. Syntactically finitary methods cannot be used to provide a proof of weak nor-

malization for Gödel’s T.

4. Syntactically finitary methods cannot be used to provide a proof of the Extrac-

tion theorem for the assertion logic of Section 2.2.

Proof: 1 follows directly from Gödel’s second incompleteness theorem. 2 is a direct

application of Theorem 3.2.6. 3 follows from 2, Theorem 3.2.6 and Theorem 3.2.7. 4

follows from 3 and the Fundamental Theorem and Escape Lemma of Section 2.2. �
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In Chapter 4 we will see how extending the notion of syntactic finitism to a

stronger ordering can be used to overcome the limitations enumerated by Theo-

rem 3.2.8.

53



Chapter 4

Lexicographic Path Induction

Programming languages theory is full of problems that reduce to proving the consis-

tency of a logic. Although the principle of transfinite induction is routinely employed

by logicians in proving such theorems, it is rarely used by programming languages re-

searchers, who often prefer alternatives such as proofs by logical relations and model

theoretic constructions.

This phenomenon can be explained at least in part by the fact that ordinals

can be notoriously tricky to work with, and are usually quite inconvenient to define

and manipulate syntactically (this is in large part due to the fact that most ordinal

notation systems rely on a notion of equality that it much more sophisticated than

syntactic equality). The Burali-Forti paradox illustrates that any ordinal notation

system is necessarily incomplete, and in practice, as ordinals get bigger, the notation

systems needed to describe them become more complex.

In contrast, the lexicographic path ordering (LPO) is powerful (its order type

approaches the small Veblen ordinal[DO88, Mos04]), is well understood by computer

scientists and is easy to define and reason about syntactically. Furthermore, it has

been used to prove the termination of term rewriting systems (TRSs) for decades,
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where, ironically, its considerable proof-theoretic strength cannot be fully harnessed.

In this chapter, we consider the effect of extending the notion of syntactic finitism

to allow induction on the lexicographic path ordering, in much the same way that

Gentzen considered the effect of extending the notion of finitism to allow transfinite

induction up to ε0.

The LPO is more than strong enough to prove theorems such as cut elimination

for Peano Arithmetic, Heyting Arithmetic, and weak normalization for Gödel’s T.

Various cut-elimination and normalization procedures can often be expressed as term

rewriting systems. Thus, one might hope to prove the weak normalization of Gödel’s

T, or cut elimination for Heyting Arithmetic using the lexicographic path ordering

to show the termination of such a TRS.

However, this is impossible. The length of the reduction sequences in any TRS

whose termination can be proven using the LPO are majorized by the Hardy hierar-

chy at ωω
ω

(or, equivalently, the fast growing hierarchy at ωω) [Wei95]; because all

of the functions from the Hardy hierarchy (and fast growing hierarchy) at ordinals

less than ε0 can be implemented in Gödel’s T, the normalization of Gödel’s T cannot

be proved by formulating it as a TRS whose termination is shown using the LPO.

Moreover, if the rules of a TRS can be shown to be reducing using the LPO, then the

resulting termination proof can be modified modified such that it is valid in a frag-

ment of Peano Arithmetic where induction is restricted to Π2-predicates (i.e. PA2)

[Buc95]. By Gödel’s second incompleteness theorem, one cannot prove the consis-

tency of arithmetic from within a fragment of arithmetic, therefore a cut-elimination

procedure for arithmetic cannot be shown to be terminating by formulating as a TRS

whose rules are reducing according to the LPO.

However, it is possible to harness the strength of the LPO as an induction princi-

ple that we call lexicographic path induction, which combines the comfort of structural
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induction with the expressive strength of transfinite induction. In [SS09], a novel con-

sistency proof by lexicographic path induction was given for an intuitionistic theory

of inductive definitions, based on the system by Martin-Löf [ML71] that inspired

the definition of inductive types in type theory [Dyb91, PM93], and several sequent

calculi in the programming languages literature [MM00, MT03, Bro06, GMN08], and

can be instantiated to a version of Heyting Arithmetic. Here, we apply the same tech-

nique to prove the extraction theorem for the assertion logic described in Section 2.2,

thus completing the proof of the weak normalization of Gödel’s T. This proof has

been formalized in a prototypical extension of Twelf (http://www.twelf.org/lpo/)

providing empirical evidence for the usefulness of lexicographic path induction.

4.1 The Lexicographic Path Ordering

The lexicographic path ordering (LPO) provides a modular way of specifying order-

ings on finite labeled trees whose constructors have fixed arity.

Given a finite signature Σ of fixed arity constructors (not to be confused with

the notion of signature to be introduced in Chapter 5), whose elements we denote

generically by the letters f and g, labeled trees are defined formally as follows

Labeled Trees s, t ::= f(s1, . . . , sn)

where the arity of f, denoted #f, is n for n ≥ 0, and (s1, . . . , sn) is informal shorthand

for a list of length n whose (dependent) BNF-style definition we omit for the sake of

readability. We use Σn to denote the constructors of Σ of arity n. Although signatures

can in principle be infinite, all of the signatures considered in this dissertation are

finite. In principle, the labeled trees described by a signature Σ could be defined
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using a non-dependent, non-hypothetical BNF-style definition.

Definition 4.1.1 (Lexicographic Path Ordering) Given a precedence relation

< on Σ we define <lpo as the smallest relation on trees that satisfies the following:

s = f(s1 , . . . , sn)<lpo g(t1 , . . . , tm) = t iff at least one of the following holds:

1. f < g and for all i ∈ 1 . . . , n si<lpo t

2. f = g and there exists k ∈ 1, . . . , n s.t. for all i < k si = ti , sk<lpo tk and for

all j ∈ k + 1, . . . , n sj<lpo t

3. s≤lpoti , for some i ∈ 1, . . . , n

where s≤lpot is shorthand for “s = t or s<lpo t.” Note that <lpo and ≤lpo can be

defined judgmentally (i.e. without the use of ellipses); we omit the inference rules for

the sake of brevity and readability.

We are concerned exclusively with instances of <lpo where < is transitive and well-

founded (and therefore irreflexive). The LPO has several nice properties, including

the preservation of transitivity and well-foundedness of <. It can be shown in a

subsystem of second-order arithmetic that f < is well-founded, then <lpo is as well

[Buc95]. However, for our purposes, we will treat the well-foundedness of <lpo , and

thus the validity of Definition 4.1.1, as an a priori justified extension to our notion

of syntactic finitism.

Lemma 4.1.2 (Properties of LPO)

(Subterm) t<lpo f(. . . t . . .)

(Monotonicity) If s<lpo t, then f(. . . s . . .) <lpo f(. . . t . . .).

(Transitivity) If < is transitive, then so is <lpo .
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(Big head) If s = f(s1 , . . . , sn), g1 < f, . . . , gm < f and t is built up from s1 , . . . , sn

and g1 , . . . , gm then t<lpo s.

Proof: The subterm, monotonicity and transitivity properties are shown (via straight-

forward inductions) in [KL80]. The big head property (or, more precisely, any given

instantiation of the Big Head property) can be shown by a straightforward induction

on the structure of t. �

Example 4.1.3 Let Σ = {z, succ, op}, where #z = 0, #succ = 1 and #op = 2, and

let < be defined as z < {succ, op}, succ < op. The following inequalities hold for

every s and t

1. succn(s)<lpo op(s, t) and succn(t)<lpo op(s, t), for every n

2. succ(op(s, t))<lpo op(s,� t)

3. op(s, op(s, op(s, t)))<lpo op(succ s, t)

4. op(s, op(succ s, t))<lpo op(succ s, succ t)

The first inequality can be seen as an instance of the big head property. The second

inequality highlights another interesting property of the LPO: if a large constructor

(in this case op) occurs beneath a small constructor (in this case succ), then “bubbling

up” the larger constructor results in a larger term, or viewed the other way, “bubbling

up” the smaller constructor results in a smaller term; this observation will play an

important role in Lemma 4.2.9. The third inequality highlights the application of

the second clause of Definition 4.1.1: in a sense, one can think a partially applied

constructor as being a constructor in its own right, where the “precedence” of op(s,−)

is smaller than op(succ s,−). The last inequality can be used to help show that the

Ackermann function, when formulated as a term rewriting system, terminates.
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4.2 The Extraction Proof

We give now the proof of the Extraction Theorem, where we reason about derivations

of the form D : (· `cut
hc(eτ )) using lexicographic path induction. Although proof

terms are in a sense finite trees, we do not apply lexicographic path induction to them

directly because proof terms contain information that we do not consider relevant

to the size of a proof. Instead, we apply the principle to skeletons of proof trees,

which will be defined in 4.2.2; lexicographic path induction on skeletons subsumes

structural induction on proof trees.

In many ways, our proof follows the same general structure as Gentzen’s later

proof of the consistency of arithmetic [Gen38], and the Howard [How70] and Schütte

[Sch77] proofs of normalization for Gödel’s T. All involve assigning well-founded

orderings to proof trees/λ-calculus terms (ε0 for Gentzen, Howard and Schütte, the

LPO here) and all unfold inductions all-at-once, rather than one-at-a-time. Like

Gentzen’s proof, we demonstrate normalization for a restricted class of sequents

(· `cut · for Gentzen, Ψ `cut
hc(eτ ) whenever Ψ varctx here). Our proof differs from

the others in that lexicographic path induction is applied directly to skeletons of

proof terms, whereas in Gentzen’s, Howard’s and Schütte’s proofs, the assignment

of ordinals to proofs/λ-calculus terms is very complex. This discrepancy shouldn’t

be too surprising: the order type of the lexicographic path ordering approaches the

small Veblen ordinal [DO88, Mos04], which is MUCH larger than ε0; it is often the

case that using stronger-than-necessary assumptions leads to simpler proofs.

4.2.1 Proof Terms

In order to define our proof, we find it convenient to manipulate proof terms written

in BNF-style, as defined below. As we have already seen, the distinction between
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the two styles of definition is largely a matter of notational preference. As usual, we

will omit dependency superscripts when they are easily inferred or irrelevant.

CF , DF , EF ::= (axiom hF )F | (cut CF (hF .DG))G | (andr CF DG)F∧G |

(andl1 (hF1 .CG) h′F1∧F2)G | (andl2 (hF2 .CG) h′F1∧F2)G |

(impr (hF .CG))F⊃G | (impl CF1 (hF2 .DG) h′F1⊃F2)G |

(allr (xτ .CF ))∀x
τF | (alll (hF [tτ/xτ ].CG) h′∀x

τ .F )G | hc-zhc(z
o) |

(hc-s Chc(e
o))hc(s e

o) | (hc-arr (xτ .vx
τ
.Chc(app e

τ⇒σ xτ )))hc(e
τ⇒σ) |

(hc-wh Cwh(eo,e′o) Dhc(e′o))hc(e
o) | (hc-atm Cha(eo))hc(e

o) |

(hcl D
P (zo)
0 (xo.hP (xo).D

P (s xo)
1 ) (xo.hha(xo).D

P (xo)
2 )

(xo.yo.hwh(xo,yo)
1 .h

P (yo)
2 .D

P (xo)
3 ) (hP (eo).EF ) h′hc(e

o))F |

(ha-var xτ vx
τ
)ha(xτ ) | (ha-app Cha

σ⇒τ (e) Dhcσ(e′))ha
τ (app e e′) |

(ha-r Chc
τ⇒o⇒τ (e1) Dhcτ (e2) Eha

o(e3))ha
τ (rτ e1 e2 e3) |

wh-betawh(app (lam x. e1) e2,e1[e2/x]) |

(wh-app Cwh(e1,e′1))wh(app e1 e2,app e′1 e2) |

wh-rzwh((rτ e1 e2 zo),e1) |

wh-rswh((rτ e1 e2 (s e3)),(app (app e2 (rτ e1 e2 e3)) e3)) |

(wh-rc Cwh(e3,e′3))wh(rτ e1 e2 e3,rτ e1 e2 e′3)

The following definition helps us to summarize the equivalence between the proof

terms as written above, and derivation trees.

Definition 4.2.1 (Compatible Proof Terms) A proof term CF is compatible

with Ψ iff every free xτ , vx
τ

and hF is declared in Ψ. This notion of compatibil-

ity can be formalized using a judgment of the form Ψ ` CF ; we omit the inference

rules for the sake of brevity.

Lemma 4.2.2 Every derivation D : (Ψ `cut
F ) is isomorphic to some DF which is

compatible with Ψ, and vice versa.

Proof: By straightforward induction. �
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Lemma 4.2.2 justifies treating proof terms D : (Ψ ` F ) and proof derivations that

satisfy Ψ ` DF interchangeably, without loss of generality.

The following definition plays an important role in our proof of extraction.

Definition 4.2.3 (Right Normal) We say that a derivation D : (Ψ `cut
F ) (or the

equivalent proof term DF ) is right normal iff it contains only right-rules. We can

formulate the concept of right normal judgmentally, but omit its inference rules for

the sake of brevity.

We are interested mostly in right-normal proofs of atomic formulas for the sake of

our proof of the Extraction theorem. The following lemma helps explain why we are

justified in thinking of the rule hcl as being an iterator over (right-normal) proof of

hc(eτ ).

Lemma 4.2.4 (Folding Right-Normal Proofs) For every right-normal C : (Ψ `cut

hc(eτ )) and every D0 : (Ψ `cut
P (zo)) and D1 : (Ψ, xo, hP (xo) `cut

P (s xo)) and

D2 : (Ψ, xo, hha(xo) `cut
P (xo)) and D3 : (Ψ, xo, yo, h

wh(xo,yo)
1 , h

P (yo)
2 `cut

P (xo)) there

exists E : (Ψ ` P (eτ )) such that E is built up using only instances of D0, D1, D2 and

D3 under substitutions, and the cut rule.

Proof: By straightforward induction on C. The proof can be realized by a function

on proof terms, which can be expressed using the following judgment.

fold-hc C D0 (x.h.D1) (x.h.D2) (x.y.h1.h2.D3) = E
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We define the inference rules for fold-hc below.

fold-hc hc-z D0 (x.h.D1) (x.h.D2) (x.y.h1.h2.D3) = D0

fold-hc C D0 (x.h.D1) (x.h.D2) (x.y.h1.h2.D3) = E

fold-hc (hc-s Chc(e)) D0 (x.h.D1) (x.h.D2) (x.y.h1.h2.D3) = cut E (h.D1[e/x])

fold-hc (hc-atm Cha(e)) D0 (x.h.D1) (x.h.D2) (x.y.h1.h2.D3) = cut Cha(e) (h.D2[e/x])

fold-hc C
hc(e′)
1 D0 (x.h.D1) (x.h.D2) (x.y.h1.h2.D3) = E

fold-hc (hc-wh Cwh(e,e′)
0 Chce

′
1 ) D0 (x.h.D1) (x.h.D2) (x.y.h1.h2.D3)

= cut Cwh(e,e′)
0 (h0.cut E (h1.D3[e/x][e′/y]))

The proof that fold-hc is a function (i.e. its effectiveness lemma) has essentially the

same structure as the proof that fold-hc is meant to represent. �

4.2.2 Ordering Proof Terms

Although proof terms contain the same amount of information as proof trees, we do

not consider all of this information to be relevant to the size of proofs. In particular,

we do not consider the “size” of hypotheses or λ-calculus terms to be relevant, nor,

with the notable exception of cut, do we consider formulas or predicates relevant.

We also do not consider dependency information to be relevant to the size of proof

terms. Therefore, we map proof terms into labeled trees, called skeletons, which are

obtained from proof terms by stripping spurious information. Because we consider

the size of cut-formulas to be relevant to the size of proofs (as is often the case in cut-

elimination-like theorems), skeletons are defined for formulas as well. The signature

Σ for skeletons is defined as follows. Note the use of the sans-serif font to distinguish
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skeletons from proof terms.

Σ0 = hc, ha,wh, axiom, hc-z, ha-var,wh-beta,wh-rz,wh-rs

Σ1 = all, andl1, andl2, impr, allr, alll, hc-s, hc-arr, hc-atm,wh-app,wh-rc

Σ2 = and, imp, andr, impl, hc-wh, ha-app

Σ3 = cut, ha-r

Σ5 = hcl

We define the stripping functions [[F ]] = s and [[CF ]] = s below. As usual, we view

the system of equations as shorthand for a judgmental definition, whose interpreta-

tion as a deterministic function follows from a straightforward induction.
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[[hc(eτ )]] = hc [[ha(eτ )]] = ha

[[wh(eτ , e′τ )]] = wh [[F ∧G]] = and([[F]], [[G]])

[[F ⊃ G]] = imp([[F]], [[G]]) [[∀xτ .F ]] = all([[F ]])

[[axiom h]] = axiom [[cut CF (hF .D)]] = cut([[F ]], [[C]], [[D]])

[[andr C D]] = andr([[C]], [[D]]) [[andl1 (h.C) h′]] = andl1([[C]])

[[andl2 (h.C) h′]] = andl2([[C]]) [[impr (h.C)]] = impr([[C]])

[[impl C (h.D) h′]] = impl([[C]], [[D]]) [[allr xτ .C]] = allr([[C]])

[[alll (h.C) h′]] = alll([[C]]) [[hc-z]] = hc-z

[[hc-s C]] = hc-s([[C]]) [[hc-arrx.v.C]] = hc-arr([[C]])

[[hc-wh C D]] = hc-wh([[C]], [[D]]) [[hc-atm C]] = hc-atm([[C]])

[[ha-var x v]] = ha-var [[ha-app C D]] = ha-app([[C]], [[D]])

[[ha-r C D E]] = ha-r([[C]], [[D]], [[E]]) [[wh-beta]] = wh-beta

[[wh-app C]] = wh-app([[C]]) [[wh-rz]] = wh-rz

[[wh-rs]] = wh-rs [[wh-rc C]] = wh-rc([[C]])

[[hcl D0 (x.h.D1) (x.h.D2) (x.y.h1.h2.D3) (h.E) h′]] = hcl([[D0]], [[D1]], [[D2]], [[D3]], [[E]])

We define the precedence ordering on skeletons as follows, which will then be

lifted to an ordering on finite trees via the lexicographic path ordering. Note that we

adopt the standard distinction between atomic and compound formulas, which will

play an important role in our proof; to eliminate the possibility of any ambiguity, we
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formalize this notion using the judgments below.

hcτ (e) atomic haτ (e) atomic whτ (e, e′) atomic

F ∧G compound F ⊃ G compound ∀xτ .F compound

Definition 4.2.5 (Skeleton Ordering) We define < as the least transitive order-

ing on the elements of Σ satisfying all of the following:

1. If f corresponds to an atomic formula (i.e. it is one of hc, ha or wh) and g

corresponds to a logical connective (i.e. it is of the form and, imp or all) then

f < g

2. If f corresponds to a formula, and g corresponds to a proof rule, then f < g

3. If f corresponds to a right-rule or a compound left-rule then f < cut

4. cut < hcl

5. If f corresponds to an atomic right-rule, then f < axiom

<lpo is the lifting of < to skeletons via the LPO. Note that < and <lpo can both be

defined judgmentally. We omit the explicit definition of their inference rules for the

sake of brevity.

The first two clauses of Definition 4.2.5 are motivated by the first two clauses of

Lemma 4.2.6, which will be used by Lemma 4.2.9; the third clause is motivated by

Lemma 4.2.9 as well. The last two clauses are motivated by Lemma 4.2.7.

Lemma 4.2.6 (Properties of Skeletons)

1. For every atomic formula F and every compound formula G, [[F]]<lpo [[G]]

2. For every F and every C, [[F]]<lpo [[C]]
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3. For every C, every t and every x, [[C]] = [[C[t/x]]]

Proof: Each case is straightforward by structural induction; both 1 and 2 are in-

stances of the big head principle. �

Because the LPO has the subterm property, and because skeletons contain most of

the structural information of proof terms, all of the instances of structural induction

on C in this chapter can be replaced by lexicographic path induction on [[C]].

4.2.3 The Normalization Procedure

Our proof is structured as follows. Consider Ψ ` CF , where Ψ is a variable context

(see Definition 2.1.1) and F is an atomic formula: our goal is to find a right normal

form for CF . In this situation, CF must either be an atomic right rule applied

to subderivations CF0
0 , . . . , CFn

n , where each Fi is also atomic, or CF is of the form

cut DG hG.EF . In the former case, we right-normalize CF1
1 , . . . , CFn

n and apply the

same atomic right rule to the result. In the latter case, we must find a proof term C ′F

which is smaller than CF , and right-normalize C ′F by induction. In this case, the

calculation of C ′F depends on whether the cut-formula G is atomic or compound.

Observe that, if G is atomic, then, by induction, we can right-normalize DG into

D′G; C ′ is obtained by eliminating all uses of hG from hG.EF , making use of D′G and

Lemma 4.2.4. If G is compound, we perform what is essentially a small-step version

of the cut-admissibility proof in [Pfe95], where, for reasons that will be explained

later, we must be careful to avoid any “commutative conversions” for hcl.

In the following lemmas, note that applying the structural properties such weak-

ening and exchange (see Lemma 2.2.2) to a derivation of Ψ ` CF will result in a

derivation of Ψ′ ` CF , where the underlying structure of CF is unchanged.
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Lemma 4.2.7 (Atomic Cut Reduction) For every CF and hF .DG, if F is atomic

and CF is right-normal and Ψ ` CF and Ψ, hF ` DG, then there exists EG such that

Ψ ` EG and [[EG]]≤lpo[[D
G]].

Proof: By structural induction on DG. Most cases are straightforward, often using

weakening and exchange before applying the induction hypothesis, and using mono-

tonicity of <lpo on the result. The non-trivial uses of hF come from axiom and hcl.

If DG = axiom hF (in which case F = G), we return CF , which is smaller than

axiom hF by the big head principle and the fifth clause of Definition 4.2.5. If DF is

a non-trivial instance of hcl, we induct on DF ’s subterms and apply Lemma 4.2.4,

whose output is smaller than DF by the third clause of Lemma 4.2.6, the big head

principle and the fourth clause of Definition 4.2.5. The proof can be realized by a

function on proof terms, which can be expressed using the following judgment.

redA CF (hF .DG) = EG
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We list some representative cases of redA’s inference rules below.

redA CF (hF .axiom hF ) = CF redA CF (hF .axiom h′G) = axiom h′G

redA Chc(e
τ ) (hhc(e

τ ).D0) = D′0 redA Chc(e
τ ) (hhc(e

τ ).D1) = D′1

redA Chc(e
τ ) (hhc(e

τ ).D2) = D′2 redA Chc(e
τ ) (hhc(e

τ ).D3) = D′3

redA Chc(e
τ ) (hhc(e

τ ).DG
4 ) = D′G4

fold-hc Chc(e
τ ) D0 (x.h′.D′1) (x.h′.D′2) (x.y.h1.h2.D

′
3) = EP (eτ )

redA Chc(e
τ ) (hhc(e

τ ).hcl D0 (x.h′.D1) (x.h′.D2) (x.y.h1.h2.D3) (h′P (eτ ).DG
4 ) hhc(e

τ ))

= cut EP (eτ ) (h′P (eτ ).D′G4 )

redA CF (hF .D0) = D′0 redA CF (hF .D1) = D′1

redA CF (hF .D2) = D′2 redA CF (hF .D3) = D′3

redA CF (hF .DG
4 ) = D′G4

redA CF (hF .hcl D0 (x.h′.D1) (x.h′.D2) (x.y.h1.h2.D3) (h′P (eτ ).DG
4 ) h′′hc(e

τ ))

= hcl D′0 (x.h′.D′1) (x.h′.D′2) (x.y.h1.h2.D
′
3) (h′P (eτ ).D′G4 ) h′′hc(e

τ )

�

The following definition will play an important role in showing that compound

cuts can be reduced: because we will only need to reduce such proof terms in contexts

that only contain compound formulas, we will not be forced to consider so-called left-

commutative conversions on hcl. The significance of this fact will be expounded upon

in the proof of Lemma 4.2.9.

Definition 4.2.8 (Compound Context) A context Ψ is compound iff, for every

hF ∈ Ψ, F is a compound formula. This can be formalized judgmentally using the

inference rules below.

· compound Ψ, xτ compound

Ψ compound

Ψ, xτ compound

Ψ compound

Ψ, vx
τ
compound

Ψ compound F compound

Ψ, hF compound
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Lemma 4.2.9 (Compound Cut Reduction) If Ψ compound and Ψ ` cut CF (hF .DG)

then there exists an EG such that Ψ ` EG and [[EF ]]<lpo [[cut CF (hF .DG)]].

Proof: By induction on the structure of cut CF (hF .DG). The proof can be realized

by a function on proof terms, which can be expressed using the following judgment.

redC (cut CF (hF .DG)) = E

We list some representative cases below; most use Lemma 4.2.6, clause 2.

If CF is a left rule, or if DG is either right rule or left rule that acts on a hypothesis

other than hF , then the cut is “commutative,” and the offending rule will be bubbled

up (see Definition 4.2.5, clause 3). Note that the restriction on Ψ means that we

never encounter commutative cuts of atomic left rules, and thus will never have to

bubble one past a cut. This is critical, because as we have seen in Lemma 4.2.7, cut

must be smaller than hcl.

redC (cut C (h.andrD1D2)) = andr (cut C h.D1) (cut C h.D2)

redC (cut (andl2 (h′.C) h′′) (h.D)) = andl2 (h′.cut C h.D) h′′

redC (cut C (h.andl2 (h′.D) h′′)) = andl2 (h′.cut C h.D) h′′

If CF is a right rule, and DG is a left rule that acts on hF , then the cut is

“essential.” The sizes of cut-formulas play a crucial role in these cases. The ∀

essential case uses Lemma 4.2.6, clause 3.

redC (cut (impr hF0 .C
G
0 ) (hF⊃G.impl D0 (hG1 .D1) hF⊃G)) =

cut (cut (cut (impr hF0 .C0) hF⊃G.D0) (hF0 .C0)) (hG1 .cut (impr hF0 .C0) hF⊃G.D1)

redC (cut (allr x.C) (h∀x.F .alll (h′F [e/x].D) h∀x.F )) =

cut (C[e/x]) (h′F [e/x].cut (allr x.C) h∀x.F .D)
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If CF or DG is a compound cut, we apply the induction hypothesis and mono-

tonicity of <lpo ; if either is an atomic cut, we bubble it up (see Lemma 4.2.6, clause

1).

redC (cut CF∧G0 h′F∧G.C1) = C ′

redC (cut (cut CF∧G0 h′F∧G.C1) D) = cut C ′ h.D

redC (cut DF⊃G
0 h′F⊃G.D1) = D′

redC (cut C (h.cut DF⊃G
0 h′F⊃G.D1)) = cut C h.D′

redC (cut (cut Chc(e
τ )

0 h′hc(e
τ ).C1) h.D) = cut Chc(e

τ )
0 (h′hc(e

τ ).cut C1 h.D)

redC (cutC(h.cutDhc(eτ )
0 (h′hc(e

τ ).D1))) = cut (cut C h.D
hc(eτ )
0 ) (h′hc(e

τ ).cut C h.D1)

If CF or DF is an application of axiom, then we return the obvious derivation,

which will be smaller by the monotonicity of <lpo .

redC (cut (axiom h′) h.D) = axiom h′

h 6= h′

redC (cut C (h.axiom h′)) = axiom h′

redC (cut C (h.axiom h)) = C

�

The following proposition will be needed to use the Compound Cut Reduction

lemma in the proof of the Extraction theorem.

Proposition 4.2.10 (World Subsumption) For all Ψ, if Ψ varctx then Ψ compound

Proof: By straightforward induction on the given derivation. �

The following Right Normalization lemma plays an analogous role to the Cut

Elimination theorem of Chapter 2. Although the proof of the theorem here is quite

different, the result can be seen as a special case of Cut Elimination for atomic

formulas.
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Theorem 4.2.11 (Right Normalization) For all CF , if F is atomic Ψ ` CF

and Ψ varctx then there exists a right normal DF such that Ψ ` DF .

Proof: By lexicographic path induction on [[CF ]]. The extraction theorem can be

realized by a function on proof terms, which can be expressed as the following judg-

ment.

extract CF = DF

We give some representative cases of the inference rules for extract below.

F compound redC (cut CF (hF .D)) = E extract E = E′

extract (cut CF (hF .D)) = E′

F atomic redA CF (hF .D) = E extract E = E′

extract (cut CF (hF .D)) = E′

extract C = C ′ extract D = D′

extract (hc-wh C D) = (hc-wh C ′ D′)
extract C = D

extract (hc-arr x.v.C) = (hc-arr x.v.D)

extract C1 = C ′1 extract C2 = C ′2 extract C3 = C ′3

extract (ha-r C1 C2 C3) = (ha-r C ′1 C
′
2 C

′
3)

�

The following theorem is analogous to Lemma 2.1.2.

Lemma 4.2.12 (Right-Normal Extraction) For all Ψ, if Ψ is a variable context

then:

1. If Dhc(e)) is right-normal and Ψ ` Dhc(e)) then there exists e′ such that e −→∗ e′

and E : (e′ ⇑) and E is compatible with Ψ

2. If Dha(e)) is right-normal and Ψ ` Dha(e)) then there exists e′ such that e −→∗ e′

and E : (e′ ⇓) and E is compatible with Ψ

3. If Dwhτ (e1,e2) is right-normal and Ψ ` Dwhτ (e1,e2) then there exists E : (e1 −→ e2)

and E is compatible with Ψ
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Proof: By induction on the structure of the given proof terms, using Theorem 2.2.1.

�

We are now ready to prove extraction for Gödel’s T, thus filling the last piece of

the puzzle in the normalization theorem begun in Section 2.2.

Theorem 4.2.13 (Extraction for Gödel’s T) For all Ψ, if Ψ is a variable con-

text then:

1. If Ψ ` Dhc(e)) then there exists e′ such that e −→∗ e′ and E : (e′ ⇑) and E is

compatible with Ψ

2. If Ψ ` Dha(e)) then there exists e′ such that e −→∗ e′ and E : (e′ ⇓) and E is

compatible with Ψ

3. If Ψ ` Dwhτ (e1,e2) then there exists E : (e1 −→ e2) and E is compatible with Ψ

Proof: By Theorem 4.2.11 and Lemma 4.2.12 �
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Chapter 5

Proofs as Logic Programs

In Section 3.2.3, we saw that any syntactically finitary proof can be represented as a

number-theoretic function that is provably total in a fragment of Peano Arithmetic.

Although this characterization is useful for calculating bounds on the expressivity

of syntactic finitism—fragments of first-order arithmetic have been well studied by

proof theorists—it is not a very satisfying formalization. This is partly due to the

fact that Peano Arithmetic is a classical theory1, although in principle this complaint

can be ameliorated by noting that the provably total functions of Heyting and Peano

arithmetic are one and the same. More fundamentally, Gödel numbering is simply

too clumsy a tool to represent basic syntactic manipulations with the gracefulness

they deserve.

In this chapter, we aim to give a more syntactic formalization of the nature of

syntactically finitary proofs. We begin with the aforementioned observation: syntac-

tically finitary proofs are all essentially first-order functions from tuples of derivations

to tuples of derivations. The defining equations for such functions can be represented

1Syntactic finitism is intended characterize a lower bound on the reasoning principles generally
accepted by programming languages researchers, many of whom consider the law of excluded middle
to be controversial.
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judgmentally in the same manner as any other function; we have already seen several

examples in Chapter 4. Recall that we consider a judgment J〈inputs; outputs〉—

where inputs and outputs are names for the syntactic categories that J depends

on—to represent a function from inputs to outputs if, and only if, it passes the

following test: given concrete terms tin from the syntactic categories of inputs, we

can always find a concrete terms tout from the syntactic categories of outputs and a

derivation of D : J〈tin; tout〉. One especially natural way to find tout and D given tin

is to perform a depth-first search on derivations.

For example, given the inputs s z and s z for the judgment ack defined in Sec-

tion 1.2, we might represent the search problem “can we find an n such that ack(s z; s z; n)

is inhabited?” using the following notation.

D : ack(s z; s z; n )

Intuitively, boxes are intended to represent holes in the derivation, where depth-first

search is used to fill them. We can model these holes using hypothetical variables

that we refer to as logic variables.

Of the inference rules for ack, only the rule ackss can possibly be used to fill

a hole of the above form. We proceed by filling in D with ackss, resulting in a

derivation with some new holes.

D0 : (ack(s z; z; m )) D1 : (ack(z; m ; n ))
ackss

ack(s z; s z; n )

We proceed by considering the left-most derivation hole D0 . Here, the only eligible

rule is acksz ; using it results in the search state represented below. In this particular

situation, we could have just as easily proceeded by filling D1 , but we consider

doing so to be ill-advised because one of its input arguments is a logic variable. In

general, we only require search to be well-behaved when all of the input arguments

to a judgment are ground terms (i.e. they do not contain logic variables); this will
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be remarked upon further in Section 5.2.4. In the case of ack, if search follows the

strategy of always considering the left-most derivation hole, then that hole’s input

arguments are guaranteed to be ground. We say that judgments with this property

are well moded, the significance of which will be discussed subsequently.

D′0 : (ack(z; s z; m ))
acksz

ack(s z; z; m ) D1 : (ack(z; m ; n ))
ackss

ack(s z; s z; n )

At this point, we again attempt to fill the leftmost derivation hole, this time using

the inference rule ackz. In doing so, we find a concrete instantiation for the logic

variable m by unifying it with s s z.

ackz

ack(z; s z; s s z)
acksz

ack(s z; z; s s z) D1 : (ack(z; s s z; n ))
ackss

ack(s z; s z; n )

We are now able to fill the remaining subgoal, whose input arguments have been

grounded by the substitution of s s z for m. We fill this goal with the only rule that

can be applied, ackz, thus completing our search.

ackz

ack(z; s z; s s z)
acksz

ack(s z; z; s s z)
ackz

ack(z; s s z; s s s z)
ackss

ack(s z; s z; s s s z)

Clearly, the search procedure sketched above, when generalized to work on ar-

bitrary judgments, can be used to implement any computable function; for exam-

ple, performing search on a judgmentally-specified big-step structural operational

semantics is a particularly natural way to define an interpretor. We refer to this

computational paradigm as logic programming, where judgments such as ack are

logic programs and search problems such as D : ack(s z; s z; n ) are queries. Our

notion of logic program differs somewhat from the standard: usually, logic programs

are atomic predicates in first order logic whose axioms are Horn clauses, where queries
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are expressed in terms of proof search on Σ1 formulas.We justify ourselves by not-

ing that Horn clauses can be naturally be represented in terms of judgments, where

depth-first search on derivations using logic variables faithfully models proof-search

for the corresponding Σ1 formulas. Thus, we sometimes abuse terminology by re-

ferring to depth-first search over judgments as proof search. We can use the logic

programming interpretation of judgments to help us characterize the provably total

functions of syntactic finitism. We proceed as follows.

In Section 5.1, we define a particular syntactic category whose terms can be used

to adequately represent arbitrary derivations of arbitrary judgments. We refer to such

a syntactic category as a logical framework ; the logical framework we are most inter-

ested in is LF [HHP87], although, for reasons that will be discussed later, we present

a spine-calculus/Herbelin-style[CP03, Her95] variant of Canonical LF[HL07]. In Sec-

tion 5.2, we define a big-step operational semantics for proof search over the terms of

the logical framework, thus providing a syntactic specification for the notion of logic

programming. However, not all logic programs are total functions: they must be

well-moded, terminating and cover all cases. In Section 5.2.5, we carve out a subset

of well-behaved logic programs by judgmentally specifying an algorithm—inspired by

the one sketched in [RP96, Roh96]—that can guarantee the well-modedness and ter-

mination of proof search. The mode/termination analysis is modular in the ordering

used on LF terms, meaning that it can, in principle, capture syntactically finitary

reasoning based on both the subterm ordering and lexicographic path ordering. We

prove the correctness of the mode/termination checker using syntactically finitary

methods extended by a principle of well-founded induction based on this modular

ordering. We leave a syntactic characterization of a coverage checker, such as [SP03],

to future work.
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5.1 Canonical Spine LF

In Section 1.1, we saw how BNF-style equations can be used to define syntactic

categories, where each clause of a definition specifies both the name of a term con-

structor, and the syntactic categories that the term constructor can be applied to.

Informally, if we think of syntactic categories as being atomic types, the applicability

of term constructors can be captured by the notion of function-type. This observa-

tion inspires us to view the following type-theory inspired definition of the natural

numbers as being nothing more than a notational variation on the usual BNF-style

definition.

nat : type

z : nat

s : nat→ nat

We have also seen that, by allowing syntactic categories to depend on one an-

other, any judgment that can be defined using inference rules can also be defined

using BNF-style definitions. We refer to this observation as the judgments-as-types

principle because, in general, judgments and (dependent) syntactic categories can

be expressed using type-theoretic declarations like the one above, extended with de-

pendent types. For example, we view the following definition as being nothing more

than a notational variation on the usual definitions of the judgments (or, alterna-

tively, syntactic categories) even(n) and odd(n) (or, alternatively, En and On).

even : nat→ type

odd : nat→ type

evenz : even z

evens : Πn:nat. odd n→ even(s n)

odds : Πn:nat. evenn→ odd(s n)

In Section 1.3, we introduced the concept of hypothetical judgment, where infer-
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ence rules and term constructors can bind variables, and and hypothetical judgments

(such as ` τ nd) are equivalent to syntactic categories (such as eτ ). We express such

hypothetical definitions in type-theoretic notation using higher-order types, where

functions of type → and Π can do no more than perform substitutions for bound

variables. We define the syntactic categories τ and eτ using this notation below.

tp : type

o : tp

⇒: tp→ tp→ tp. (we treat ⇒ as an infix operator)

exp : Πt1:tp.Πt2:tp.((exp t1)→ (exp t2))→ exp (t1 ⇒ t2)

app : Πt1:tp.Πt2:tp.(exp (t1 ⇒ t2))→ (exp t1)→ (exp t2)

We denote variable-binding functions using λ-notation, meaning that the term ex-

pressed in BNF-style notation as (lamxo.xo)o⇒o would be expressed in type-theory

inspired notation as lam o o (λx:o.x), which can be accurately represented by a term

of the same name in a dependently-typed λ-calculus with constants of the appropriate

types.

This leads us to the following observation. Given a dependently-typed λ-calculus,

it should be straightforward to adequately encode judgments as types and inference

rules as constants, such that every derivation is isomorphic to a canonical λ-calculus

term of the appropriate type. The logical framework LF [HHP87] is just such a

λ-calculus, where canonical forms are β-short and η-long. The proof that every LF

term can be converted to a canonical form involves a nontrivial proof by logical

relations [HP05]. Although we have seen in Chapter 2 that logical relations proofs

are compatible with syntactic finitism, converting expressing this result in terms

of structural logical relations would be prohibitively complex for the purpose of

defining proof search. Instead, we rely on a formalization of LF similar to canonical

LF [HL07], whose metatheory is clearly syntactically finitary. Here, we define a
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spine calculus variation of canonical LF because we feel that this formulation leads

to a more natural account of proof search. We provide a technical treatment of

the metatheory canonical spine LF, closely mirroring the technical development of

canonical LF in [HL07], in the following subsections. We will not formally address

the issue of proving adequacy theorems for this formulation; instead we defer to the

treatment provided in the aforementioned references.

5.1.1 Terms and Typing Rules

Below, we present the abstract syntax for a spine-calculus [CP03] variation of canon-

ical LF [HL07]. This presentation closely mimics the way that LF is represented

internally by the programming language Twelf, and simplifies the presentation of

proof-search for LF terms in Section 5.2. It should also be noted that this presenta-

tion of LF closely resembles the cut-free proof terms for Herbelin’s LJT [Her95], and

so we adopt some of the notational conventions from this paper.

Kinds K,L ::= type | Πx:A.K

Type Families A,B ::= aM | Πx:A.B

Canonical Terms M,N ::= xM | cM | λx:A.M

Canonical Spines M,N ::= · | N :: M

Contexts Γ ::= · | Γ, x:A

Signatures Σ ::= · | Σ, a:K | Σ, c:A

Note that, unlike the presentation of canonical LF in [HL07], we include type-labels

on λ-abstractions; although these type-labels are unnecessary, having them makes

the specification of the mode/termination checker somewhat simpler.

For convenience, we use the letter h to stand for heads of terms (i.e. either x or

c).A term that would be written as h M0 . . . Mn in conventional presentations of LF

would be written as h (M0 :: . . . :: Mn :: ·) here (although we sometimes write the
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former as shorthand for the latter). For any syntactic category E among K,A,M

and Γ, we write x ∈ FV (E) to refer to the judgment that characterizes when x

occurs freely in E, and write x#E to refer to the judgment that characterizes when

x is not among the free variables of E (we inherit this convention from [HL07]). We

sometimes write Πx:A.B as A → B when x#B holds. In general, we require x#Γ

to hold in order for Γ, x:A to be well-formed; this side condition can typically be

satisfied by the tacit renaming of bound variables. Similarly, we require that each

term- or family-level constant may be declared at most once in Σ.

We use the notion of simple types to help define hereditary substitutions; although

we reuse the symbols σ and τ , the simple types defined below not to be confused

with the similar notion of types defined in Section1.3.

Simple Types τ, σ ::= a | τ → σ

The mapping of type-families to simple types is straightforward.

(aM)− = a

(Πx:A.B)− = (A−)→ (B−)

We define the notion of head for type families and simple types below.

hd(aM) = a

hd(Πx:A.B) = hd(B)

hd(a) = a

hd(τ → σ) = hd(σ)

Clearly, for every A, hd(A) = hd(A−).
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An LF specification is parameterized not only by a signature Σ (not to be con-

fused with the notion of signature from Chapter 4), but also by a (decidable) binary

subordination relation, v, on the family-level constants in Σ; we lift v to arbitrary

families by writing A v B as shorthand for hd(A) v hd(B). Intuitively, A v B holds

whenever terms of type A can occur inside of terms of type B. The typing, well-

formedness and substitution judgments for LF are listed along with their informal

meanings below.

Γ `Σ,v K : kind K is a valid kind

Γ `Σ,v A : K A is a family of kind K

Γ; K `Σ,v M : K ′ M is a spine that transforms the kind K into K ′

Γ `Σ,v M : A M is a term of type A

Γ; A `Σ,v M : B M is a spine that transforms A into B

`Σ,v Γ : ctx Γ is a valid context

`v Σ : sig Σ is a valid signature

[M/x]τK = K ′ substituting M for x in K results in K ′

[M/x]τA = A′ substituting M for x in A results in A′

[M/x]τN = N ′ substituting M for x in N results in N ′

[M/x]τM = M ′ substituting M for x in M results in M ′

[M/x]τΓ = Γ′ substituting M for x in Γ results in Γ′

reduceτ (M,M) = N applying each element of the spine M to M results in N

All of the typing rules for kinds, families, spines and terms have a premiss of the form

`Σ,v Γ : ctx; we will not explicitly write this premiss for the sake of readability. We

begin specifying the inference rules for these judgments below.

KIND-TYPE

Γ `Σ,v type : kind

Γ `Σ,v A : type Γ, x:A `Σ,v K : kind
KIND-PI

Γ `Σ,v Πx:A.K : kind
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Γ `Σ,v A : type Γ, x:A `Σ,v B : type hd(A) v hd(B)
FAM-PI

Γ `Σ,v Πx:A.B : type

a:K in Σ Γ; K `Σ,v M : type
FAM-ATM

Γ `Σ,v aM : type
FAM-LIST-NIL

Γ; K `Σ,v · : K

Γ `Σ,v M : A [M/x]A−K = K ′ Γ; K ′ `Σ,v M : L
FAM-LIST-CONS

Γ; Πx:A.K `Σ,v M :: M : L

Γ `Σ,v A : type Γ, x:A `Σ,v M : B
TERM-LAM

Γ `Σ,v λx:A.M : Πx:A.B

c:A in Σ Γ; A `Σ,v M : aN
TERM-ATM-C

Γ `Σ,v cM : aN

x:A in Γ Γ; A `Σ,v M : aN
TERM-ATM-V

Γ `Σ,v xM : aN
TERM-LIST-NIL

Γ; A `Σ,v · : A

Γ `Σ,v M : A [M/x]A−B = B′ Γ; B′ `Σ,v M : A′
TERM-LIST-CONS

Γ; Πx:A.B `Σ,v M :: M : A′

SIG-EMPTY

`v · : sig

`v Σ : sig Γ `Σ,v A : type c#Σ
SIG-TERM

`v Σ, c:A : sig

`v Σ : sig Γ `Σ,v K : kind a#Σ
SIG-FAM

`v Σ, a:K : sig

CTX-EMPTY

`Σ,v · : ctx

`Σ,v Γ : ctx Γ `Σ,v A : type x#Γ

`Σ,v Γ, x:A : ctx

The notion of hereditary substitution [M/x]τE = E ′ defined below is not to be

confused with the ordinary substitutions used in earlier chapters; our spine calculus

has the flavor of a cut-free sequent calculus, and performing a hereditary substitution

is akin to using cut as an admissible rule. In particular, hereditary substitutions can

be viewed as partial functions on arbitrary syntactic categories, and as total functions

on well-formed syntactic categories. We define hereditary substitution judgmentally
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below.

[M/x]τ type = type

[M/x]τA = A′ [M/x]τK = K ′ x#y

[M/x]τΠy:A.K = Πy:A′.K ′

[M/x]τM = N

[M/x]τaM = aN

[M/x]τA = A′ [M/x]τB = B′ x#y

[M/x]τΠy:A.B = Πy:A′.B′

h#x [M/x]τN = N ′

[M/x]τhN = hN ′

[M/x]τN = N ′

[M/x]τaN = aN ′

[M/x]τN = N ′ reduceτ (M,N ′) = M ′

[M/x]τxN = M ′

[M/x]τA = A′ [M/x]τN = N ′ x#y

[M/x]τλy:A.N = λy:A′.N ′

[M/x]τ · = ·

[M/x]τN = N ′ [M/x]τN = N ′

[M/x]τN :: N = N ′ :: N ′

[N/x]τM = M ′ reduceσ(M ′, N) = N ′

reduceτ→σ(λx:A.M,N :: N) = N ′ reduceτ (M, ·) = M

[M/x]τ · = ·

[M/x]τΓ = Γ′ [M/x]τA = B x#y y#M

[M/x]τΓ, y:A = Γ′, y:B

The subordination v relation specified along with the signature Σ;we expect this

specification to be both syntactic and decidable. Just as some signatures are consid-

ered ill-formed, some subordination relations also considered ill-formed. We define

well-formed subordination relations in the style of [HL07], as opposed to [Vir99]),

below, although the distinction between these two approaches does not affect our

presentation.

Definition 5.1.1 (Subordination Relation) Given Σ, the subordination relation

v is well formed iff it satisfies all of the following properties:

1. `v Σ : sig

2. For all a:Πx:A1 . . .Πx:An. type in Σ, hd(Ai)va (for all i ∈ 1, . . . , n)

3. vis reflexive
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4. vis transitive

Note that condition 2 can be expressed judgmentally (i.e. without the use of ellipses);

we omit this characterization for the sake of readability.

We write @ for the strict portion of v (i.e. a @ b iff a v b and b 6v a) and ≡ for

the reflexive portion of v (i.e. a ≡ b iff a v b and b v a). We say that a and b are

mutually recursive whenever a ≡ b.

Although we follow [HL07] by viewing v as part of an LF specification, in practice

the “strongest subordination relation” can be computed from Σ. From now on, we

will always assume that fixed, well-formed specifications of v and Σ have been given;

thus, for the sake of readability, we will use ` in place of `Σ,v whenever there is no

ambiguity.

5.1.2 Hereditary Substitutions

Here, as in canonical LF, hereditary substitutions play the dual role of substitution

and normalization. In this section, we prove that Hereditary substitutions are applied

to well-formed terms are well behaved.

Lemma 5.1.2 (Decidability of Substitution)

1. For any E in {K,A,M,M,Γ}, for every M,x and τ there either exists an E ′

such that [M/x]τE = E ′ or no such E ′ exists

2. For every M,M and τ either there exists an N such that reduceτ (M,M) = N

or no such N exists

Proof: By mutual induction: τ followed by E for 1, and τ followed by M for 2. �

Lemma 5.1.3 (Uniqueness of Substitutions and Formation)

84



1. For any E in {K,A,M,M} if [M/x]τE = E ′ and [M/x]τE = E ′′ then E ′ = E ′′

2. If reduceτ (M,M) = N and reduceτ (M,M) = N ′ then N = N ′

3. If Γ ` A : K and Γ ` A : K ′ then K = K ′

4. If Γ `M : A and Γ `M : B then A = B

5. If Γ; A `M : P and Γ; A `M : P ′ then P = P ′

Proof: By straightforward mutual inductions on the structures of the given deriva-

tions. �

Lemma 5.1.4 (Substitutions Preserve Freshness)

1. Given E among {K,A,M,M}, if [M/x]τE = E ′ and y#M and y#E then

y#E ′

2. If reduceτ (M,M) = N and x#M and x#M then x#N

Proof: By straightforward mutual induction on the given substitution derivations.

�

Lemma 5.1.5 (Contexts Contain Free Variables) If x#Γ then:

1. if Γ ` K : kind then x#K

2. if Γ; K `M : K ′ then x#K and x#M and x#K ′

3. if Γ ` A : type then x#A

4. if Γ; A `M : B then x#A and and x#M and x#B

5. if Γ `M : A then x#M and x#A
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Proof: By straightforward mutual induction on the given typing derivations, using

Lemma 5.1.4 in the TERM-LIST-CONS and FAM-LIST-CONS cases. �

Lemma 5.1.6 (Weakening for Typing)

1. If Γ,Γ′ `M : A and Γ ` B : type then Γ, x:B,Γ′ `M : A

2. If Γ,Γ′ ` A : K and Γ ` B : type then Γ, x:B,Γ′ ` A : K

3. If Γ,Γ′; A `M : A′ and Γ ` B : type then Γ, x:B,Γ′; A `M : A′

4. If Γ,Γ′; K `M : K ′ and Γ ` B : type then Γ, x:B,Γ′; K `M : K ′

Proof: By straightforward mutual inductions. �

Strengthening isn’t used to prove the substitution lemma, but it will be useful

later on.

Lemma 5.1.7 (Strengthening for Typing)

1. If Γ, x:B,Γ′ `M : A and x#Γ′ and x#M then Γ,Γ′ `M : B

2. If Γ, x:B,Γ′ ` A : K and x#Γ′ then Γ,Γ′ ` A : K

3. If Γ, x:B,Γ′; A `M : A′ and x#Γ′ and x#M then Γ,Γ′; A `M : A′

4. If Γ, x:B,Γ′; K `M : K ′ and x#Γ′ and x#K and x#M then Γ,Γ′; K `M : K ′

Proof: By straightforward mutual inductions, using Lemma 5.1.4 in 3 and 4. �

Lemma 5.1.8 (Vacuous Substitutions) Given M,x, τ and E among {K,A,M,M},

if x#E then [M/x]τE = E

Proof: By induction on the structure of E. �
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Lemma 5.1.9 (Substitutions Consume Variables) Given M,x, τ and E among

{K,A,M,M}, if [M/x]τE = E ′ and x#M then x#E ′

Proof: By induction the given substitution derivation. �

Lemma 5.1.10 (Erasure is Invariant Under Substitutions) If [M/x]τA = A′

then A− = A′−

Proof: By straightforward induction over the structure of the substitution deriva-

tion. �

The following lemma can be thought of both as a kind of commutativity lemma

for hereditary substitutions, and form of Church-Rosser.

Lemma 5.1.11 (Composition of Substitutions)

1. For all E in {K,A,M,M}, if D : ([M2/x]τ2E1 = E) and E : ([M0/x0]τ0E1 = E ′1)

and F : ([M0/x0]τ0M2 = M ′
2) and x#x0 and x#M0 and x#M2 then there exists

and E ′ such that [M0/x0]τ0E = E ′ and [M ′
2/x]τ2E

′
1 = E ′

2. If D : (reduceτ2(M1,M2) = M ′) and E : ([M0/x0]τ0M1 = M ′
1) and F : ([M0/x0]τ0M2 =

M ′
2) and x0#M0 then there exists an M ′ such that reduceτ0(M

′
1,M

′
2) = M ′ and

[M0/x0]τ0M = M ′

Proof: By mutual induction on the (commutative generalization of) the simulta-

neous ordering of τ0 and τ2, followed by D. Most of the cases are straightforward;

however the cases in 1 where E1 = x0M1 and E1 = xM1 are somewhat tricky, as is

the substitution case of 2. We show them here.

1.
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Case:

D =

D0

[M2/x]τ2M1 = M

D1

reduceτ2(M2,M) = M

[M2/x]τ2xM1 = M

E =

E0

[M0/x0]τ0M1 = M ′1 x#x0

[M0/x0]τ0xM1 = xM ′1

[M0/x0]τ0M2 = M ′2 and x#M0 and x#x0 and x#M ′2 given

[M0/x0]τ0M = M ′ and [M ′2/x]τ2M = M ′ by IH 1 on τ0, τ2 and D0

reduceτ2(M ′2,M
′) = M ′ and [M0/x0]τ0M = M ′ by IH 2 on τ0, τ2 and D1

[M ′2/x]τ2xM ′1 = M ′ by rule

Case:

D =

D0

[M2/x]τ2M1 = M x#x0

[M2/x]τ2x0M1 = x0M

E =

E0

[M0/x0]τ0M1 = M ′1

E1

reduceτ0(M0,M ′1) = M ′1

[M0/x0]τ0x0M1 = M ′1

[M0/x0]τ0M2 = M ′2 and x#M0 and x#x0 and x#M ′2 given

[M0/x0]τ0M = M ′ and [M ′2/x]τ2M ′1 = M ′ by IH 1 on τ0, τ2 and E1

[M ′2/x]τ2M0 = M0 by lemma 5.1.8

reduceτ0(M0,M ′) = M ′ and [M ′2/x]τ2M
′
1 = M ′ by IH 2 on τ2, τ0 and D0

[M0/x0]τ0x0M1 = M ′ by rule

2.
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Case:

D =

D0

[M2/x]τ2M1 = N

D1

reduceσ2(N,M2) = M

reduceτ2→σ(λx:A1.M1,M2 :: M2) = M

E =

E0

[M0/x0]τ0A1 = A′1

E1

[M0/x0]τ0M1 = M ′1 x#x0

[M0/x0]τ0λx:A1.M1 = λx:A′1.M
′
1

F =

F0

[M0/x0]τ0M2 = M ′2

F1

[M0/x0]τ0M2 = M ′2

[M0/x0]τ0M2 :: M2 = M ′2 :: M ′2

x0#M0 given

x0#M ′2 by Lemma 5.1.9

[M0/x0]τ0N = N ′ and [M ′2/x]τ2M
′
1 = N ′ by IH 1 on τ0, τ2 and D0

reduceσ2(N ′,M ′2) = M ′ and [M0/x0]τ0M = M ′ by IH 2 on σ2, τ0 and D1

�

We are now ready to show that hereditary substitutions are total functions on

well-formed syntactic categories.

Theorem 5.1.12 (Hereditary Substitutions)

1. If Γ; A `M : B and Γ `M : A and A− = τ then reduceτ (M,M) = M ′ and

Γ `M ′ : B

2. If Γ0 `M : A and A− = τ then:

(a) If ` Γ0, x:A,Γ1 : ctx then [M/x]τΓ1 = Γ′1 and ` Γ0,Γ
′
1 : ctx
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(b) If Γ0, x:A,Γ1 ` K : kind and [M/x]τΓ1 = Γ′1 then [M/x]τK = K ′ and Γ0,Γ
′
1 ` K ′ : kind

(c) If Γ0, x:A,Γ1 ` B : type and [M/x]τΓ1 = Γ′1 then [M/x]τB = B′ and Γ0,Γ
′
1 ` B′ : type

(d) If Γ0, x:A,Γ1; K `M : type and [M/x]τΓ1 = Γ′1 and [M/x]τK = K ′ then

[M/x]τM = M ′ and Γ0,Γ
′
1; K ′ `M ′ : type

(e) If Γ0, x:A,Γ1 ` N : B and [M/x]τΓ1 = Γ′1 then [M/x]τN = N ′ and [M/x]τB = B′

and Γ0,Γ
′
1 ` N ′ : B′

(f) If Γ0, x:A,Γ1; B `M : aN and [M/x]τΓ1 = Γ′1 and [M/x]τB = B′ then

[M/x]τM = M ′ and [M/x]τN = N ′ and Γ0,Γ
′
1; B′ `M ′ : aN ′

Proof: By simultaneous induction on τ followed by Γ; A `M : aN for 1, and τ

followed by the typing derivation of the syntactic category being substituted into

for 2. In 1, the τ → σ case uses Uniqueness of Substitutions and Formation. In

2, the FAM-ATM and TERM-ATM-C cases use the Vacuous Substitution Lemma;

the FAM-LIST-NIL and TERM-LIST-NIL cases are direct; the FAM-LIST-CONS

and TERM-LIST-CONS cases use Composition of Substitutions and Uniqueness of

Substitutions; and the non-trivial TERM-ATM-V case uses Weakening for Typing

(repeated inductively on Γ′1). All other cases are straightforward. �

The following lemma is a useful corollary to the Hereditary substitution theorem.

Lemma 5.1.13 (Regularity for Typing)

1. If `v Σ : sig and a:K ∈ Σ then · ` K : kind

2. If `v Σ : sig and c:A ∈ Σ then · ` A : type

3. If ` Γ : ctx and x:A ∈ Γ then Γ ` A : type

4. If Γ ` K : kind and Γ; K `M : K ′ then Γ ` K : kind

90



5. If Γ ` A : K then Γ ` K : kind

6. If Γ ` A : type and Γ; A `M : B then Γ ` B : type

7. If Γ `M : A then Γ ` A : type

Proof: By straightforward induction on the structure of the given typing deriva-

tions.1 and 2 require an analog of Weakening for Typing for signatures, 3 uses Weak-

ening for Typing, 4 and 6 use Theorem 5.1.12. �

5.1.3 Eta Expansion

Unlike the conventionally defined λ-calculi, here heads (i.e. constants and vari-

ables) are not considered first-class expressions. However, any given head can be

η-expanded into a first-class term. We find the notion of spine concatenation, de-

fined below, useful for defining this notion of expansion.

(·)@M = M :: ·
N@M = M

(N :: N)@M = N :: M

M@· = M

M@N = M ′ M ′@N = N ′

M@(N :: N) = N ′

Lemma 5.1.14 (Empty Concatenation) For every M , (·)@M = M

Proof: By a straightforward induction on the structure of M �

Lemma 5.1.15 (Spines Are Concatenatable)

1. For every M and M there exists N s.t. M@M = N

2. For every M0 and M1 there exists N s.t. M0@M1 = N

Proof: 1 follows by straightforward induction on the structure of M ; 2 follows by

straightforward induction on the structure of M1, using 1. �
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Lemma 5.1.16 (Uniqueness of Concatenation)

1. If M@M = N and M@M = N ′ then N = N ′

2. If M0@M1 = N and M0@M1 = N ′ then N = N ′

Proof: 1 follows by straightforward induction on the structure of M ; 2 follows by

straightforward induction on the structure of M1, using 1. �

Lemma 5.1.17 (Concatenation Preserves Freshness)

1. If M0@M1 = N then (x#M0 and x#M1) iff x#N

2. If M0@M1 = N then (x#M0 and x#M1) iff x#N

Proof: 1 is by straightforward induction on M0, 2 is by straightforward induction

on M1 using 1. �

Lemma 5.1.18 (Spine Concatenation Substitution)

1. If [M/x]τN = N ′ and [M/x]τN = N ′ and N@N = M then there exists M ′ s.t.

[M/x]τM = M ′ and N@N ′ = M ′

2. If [M/x]τN0 = N ′0 and [M/x]τN1 = N ′1 and N0@N1 = N then there exists M

such that [M/x]τN = M and N ′0@N ′1 = M

Proof: 1 follows by a straightforward induction on the structure of N , and 2 follows

by a straightforward induction on the structure of N1, using 1. �

Lemma 5.1.19 (Spine Concatenation Typing)

1. If Γ; A `M : Πx:B1.B2 and Γ `M : B1 and [M/x]B−1 B2 = B and M@M =

M ′ then Γ; A `M ′ : B
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2. If Γ; A `M : A′ and Γ; A′ ` N : B and M@N = M ′ then Γ; A `M ′ : B

Proof: 1 follows by a straightforward induction on the structure of M , 2 follows

from a straightforward induction on the structure of N , using 1. �

We are now ready to define expansion.

Definition 5.1.20 (Expansion) Expansion is implemented as a function on heads,

types and spines, using the judgment expandh(A;M) = M , whose rules are defined

below.

expandh(aM ;N) = hN

expandx(A; ·) = N x#N N@N = M expandh(B;M) = M

expandh(Πx:A.B;N) = λx:A.M

Theorem 5.1.25 summarizes the intuitive meaning of expand.

As usual, we show that the judgment expandh(A;M) = N can be viewed as a

(deterministic) function by means of case analysis and induction.

Lemma 5.1.21 (Existence, Uniqueness of Eta Expansion)

1. For every h,M and A, there exists an M such that expandh(A;M) = M

2. If expandh(A;M) = M and expandh(A;M) = M ′ then M = M ′

Proof: Both are by straightforward inductions on A−. In 1’s induction step, the

freshness condition can always be satisfied by the renaming of bound variables; 2’s

induction step uses Lemma 5.1.16 �

Lemma 5.1.22 (Expansion Preserves Freshness)

1. If D : (expandh(A;M) = M) and x#h and x#M then x#M

2. If D : (expandh(A;M) = M) and x#M then x#h and x#M
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Proof: Both cases are by straightforward induction on the structure of D using

5.1.17. �

Lemma 5.1.23 (Trivial Substitution on Eta Expansion)

If D : (expandh(A;M) = M) and x#h and [N/x]τA = A′ and [N/x]τM = M ′ then

[N/x]τM = M ′ and expandh(A
′;M ′) = M ′.

Proof: By straightforward induction on the structure of D, using Lemma 5.1.18. �

Lemma 5.1.24 (Undoing Concatenation in Reduction)

If D : (Γ; A `M0 : Πx:B1.B2) and E : (Γ `M : A) and Γ `M1 : B1 and F :

M0@M1 = M and G : (reduceA−(M,M) = N) then reduceA−(M,M0) = λx:B1.N
′

and [M1/x]B−1 N
′ = N

Proof: By induction on the structure of M0; the reasoning is straightforward, but

the case analysis is not. We show both cases below.

Case:

D =
TERM-LIST-NIL

Γ; Πx:B1.B2 ` · : Πx:B1.B2

E =

E0

Γ ` B1 : type

E1

Γ, x:B1 `M : B2

TERM-LAM

Γ ` λx:B1.M : Πx:B1.B2

F = ·@M1 = M1 :: ·

G =

G0

[M1/x]B−1 M = N reduceB−2
(N, ·) = N

reduceB−1 →B
−
2

(λx:B1.M,M1 :: ·) = N ′

reduceτ (λx:B1.M, ·) = λx:B1.M by rule

[M1/x]B−1 M = N given (G0)
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Case:

D =

D0

Γ `M0 : A1

D1

[M0/x]A−1 A2 = A′2

D2

Γ; A′2 `M0 : Πx:B1.B2

Γ; Πy:A1.A2 `M0 :: M0 : Πx:B1.B2

E =

E0

Γ ` A1 : type

E1

Γ, y:A1 `M : A2

TERM-LAM

Γ ` λy:A1.M : Πy:A1.A2

F =

F0

M0@M1 = M

(M0 :: M0)@M1 = M0 :: M

G =

G0

[M0/y]A−1 M = M ′

G1

reduceA−2
(M ′,M) = N

reduceA−1 →A
−
2

(λy:A1.M,M0 :: M) = N

Γ `M ′ : A′2 by Theorem 5.1.12 and Lemma 5.1.3

reduceA−2
(M ′,M0) = λx:B1.N

′

and [M1/x]B1−N
′ = N by IH on M0

reduceA−1 →A
−
2

(λy:A1.M,M0 :: M0) = λx:B1.N
′ by rule

�

Theorem 5.1.25 (Soundness of Eta Expansion)

1. If h:A ∈ Γ or h:A ∈ Σ and Γ; A `M : B and D : (expandh(B;M) = M) then

Γ `M : B

2. If expandx(B; ·) = M then:

(a) if D : (Γ ` K : kind) then [M/x]B−K = K
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(b) if D : (Γ; K ` N : K ′) then [M/x]B−N = N

(c) if D : (Γ ` A : type) then [M/x]B−A = A

(d) if D : (Γ; A ` N : A′) then [M/x]B−N = N

(e) if D : (Γ ` N : A) then [M/x]B−N = N

3. If D : (expandh(B;M0) = M) and E : (Γ; B `M1 : aN) and F : (M0@M1 =

M) then reduceB−(M,M1) = hM

4. If Γ ` N : A and Γ; A `M : B and x#A and x#M and x#B and D : expandx(B;M) =

M then reduceA−(N,M) = M ′ and [N/x]A−M = M ′

Proof: By mutual induction. 2 is by induction on B− followed by the structure of

the thing being substituted into, 3 is by induction on the structure of B− followed by

M0, and all of the other cases are by induction B− followed by a dummy ordering.

We show some representative cases below. �

1.

Case:

D =

D0

expandx(B1; ·) = M1 x#M M@M1 = M2

D1

expandh(B2;M2) = M

expandh(Πx:B1.B2;M) = λx:B1.M

h:A ∈ Γ or h:A ∈ Σ and Γ; A `M : Πx:B1.B2 given

Γ ` Πx:B1.B2 : type by Regularity for Typing

Γ ` B1 : type and Γ, x:B1 ` B2 : type by inversion for typing

Γ; B1 ` · : B1 by rule (TERM-LIST-NIL)

Γ, x:B1 `M1 : B1 by IH 1 on B−1

[M1/x]B−1 B2 = B2 by IH 2 on B−1
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Γ, x:B1; A `M : Πx:B1.B2 by Weakening for Typing

Γ, x:B1; A `M2 : B2 by Lemma 5.1.18

Γ, x:B1 `M : B2 by IH 1 on B−2

Γ ` λx:B1.M : Πx:B1.B2 by rule (TERM-LAM )

2.

Case:

D =

D0

Γ ` N : A1

D1

[N/y]A−1 A2 = A′2

D2

Γ; A′2 ` N : A′1
TERM-LIST-CONS

Γ; Πy:A1.A2 ` N :: N : A′1

expandh(B; ·) = M given

[M/x]B−N = N by IH 2 on B− and N

[M/x]B−N = N by IH 2 on B− and N

[M/x]B−(N :: N) = N :: N by rule

Case:

D =

x:B in Γ

D0

Γ; B `M : aN
TERM-ATM-V

Γ ` xM : aN

expandx(B; ·) = M

[M/x]B−M = M by IH 2 on B− and M

Γ; B ` · : B by rule (TERM-LIST-NIL)

M@· = M by rule

reduceB−(M,M) = xM by IH 3 on B− and M

[M/x]B−xM = xM by rule

3.
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Case:

D =

D0

expandx(B1; ·) = M0 x#M0

D1

M0@M0 = M

D2

expandh(B2;M) = M

expandh(Πx:B1.B2;M0) = λx:B1.M

E =

E0

Γ `M1 : B1

E1

[M1/x]B−1 B2 = B′2

E2

Γ; B′2 `M1 : aN0

TERM-LIST-CONS

Γ; Πx:B1.B2 `M1 :: M1 : aN0

F =

F0

M0@M1 = M ′0

F1

M ′0@M1 = N

M0@(M1 :: M1) = N

[M1/x]B−1 M0 = M0 by Lemma 5.1.8

Γ; B1 ` · : B1 by rule (TERM-LIST-NIL)

reduceB−1
(M1, ·) = M1 by rule

x#B1 by the well-formedness of Πx:B1.B2

[M1/x]B−1 M0 = M1 by IH 4 on B−1 and Lemma 5.1.3

[M1/x]B−1 M = M ′
0 by Lemma 5.1.18 and Lemma 5.1.16

expandh(B
′
2;M ′

0) = M ′ and [M1/x]B−1 M = M ′ by Lemma 5.1.23

B′−2 = B−2 by Lemma 5.1.10

reduceB′−2
(M ′,M1) = hN by IH 3 on B′−2 and M1

reduceB−1 →B
−
2

(λx:B1.M,M1 :: M1) = hN by rule

4.
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Case:

D0

expandy(B1; ·) = M1 y#M

D1

M@M1 = M2

D2

expandx(B2;M2) = M

expandx(Πy:B1.B2;M) = λy:B1.M

Γ ` N : A and Γ; A `M : Πy:B1.B2

and x#A and x#M and x#Πy:B1.B2 given

Γ, y:B1; B1 ` · : B1 by rule (TERM-LIST-NIL)

Γ, y:B1 `M1 : B1 by IH 1 on B−1

Γ, y:B1; A `M : Πy:B1.B2 by Weakening for Typing

Γ ` A : type by Regularity for Typing

Γ ` Πy:B1.B2 : type by Regularity for Typing

Γ, y:B1 ` B2 : type by inversion for typing

[M1/y]B−1 B2 = B2 by IH 2 on B−1

Γ, y:B1; A `M2 : B2 by Lemma 5.1.19

x#y by the renamability of bound variables

x#B1 and x#B2 by def of fresh

x#M1 by Lemma 5.1.22

x#M2 by Lemma 5.1.17

reduceA−(N,M2) = M ′ and [N/x]A−M = M ′ by IH 4 on B−2

Γ, y:B1 ` N : A by Weakening for Typing

reduceA−(N,M) = λy:B1.M
′′

and [M1/x]B−1 M
′′ = M ′ by Lemma 5.1.24

Γ ` λy:B1.M
′′ : Πy:B1.B2 by Theorem 5.1.12 and Lemma 5.1.3

[M1/x]B−1 M
′′ = M ′′ by IH 2 on B−1
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M ′′ = M ′ by Lemma 5.1.3

reduceA−(N,M2) = λy:B1.M
′ by equality

[N/x]A−B1 = B1 by Lemma 5.1.8

[N/x]A−λy:B1.M = λy:B1.M
′ by rule

5.2 Logic Programming

At the beginning of this chapter, we sketched a search procedure for finding a deriva-

tion of a given judgment. In this section, we will formalize this idea by describing a

procedure that finds LF terms of a given LF type.

5.2.1 Mixed Prefix Contexts and Generalized Substitutions

In order to define proof search, we need some way to model logic variables. One

possibility would be to define logic variables using contextual modal type theory

[NPP08], but this would involve a non-trivial extension to our spine calculus pre-

sentation of canonical LF. Instead, we model logic variables using ordinary LF vari-

ables, but we have to be careful. If y is considered a logic variable in a query of

the form Γ, y:B ` ? : Πx:A1.A2 (i.e. y is a placeholder for an as-of-yet unde-

termined LF term), then we expect proof search to proceed by solving the query

Γ, y:B, x:A1 ` ? : A2. But, unlike y, x is not intended to serve as a placeholder

for anything; it is an actual variable that will be bound by a λ. In other words x

and y are very different kinds of variables, and need to be treated as such. To this

end, we express queries in terms of LF contexts that have been augmented with flags

to distinguish the two notions of variable. Such augmented contexts are known as

mixed-prefix contexts [Mil92b] and have previously been used in a setting similar to
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this one in [RP96, Roh96].

Mixed-prefix Context ∆ ::= · | ∆,∀x:A | ∆,∃x:A

Intuitively, existentially-quantified variables can be thought of as logic variables, and

universally quantified variables can be thought of as actual variables. As with ordi-

nary LF contexts, we assume that all variable declarations in a mixed prefix context

are unique; this can typically be achieved by the tacit renaming of bound variables.

Likewise, we assume that generalized substitutions act on any given variable at most

once. A mixed-prefix context can be converted to an ordinary context using |∆|, and

an ordinary context can be converted to a mixed-prefix context using ∃Γ and ∀Γ.

|·| = ·

|∆, ∀x:A| = |∆|, x:A

|∆, ∃x:A| = |∆|, x:A

∀(·) = ·

∀(Γ, x:A) = (∀Γ), ∀x:A

∃(·) = ·

∃(Γ, x:A) = (∃Γ), ∃x:A

We say that a mixed prefix context is raised if all of its existentially quantified

variables occur at the beginning of the context. We formalize this concept, which

will be useful later sections, with the judgment below.

` ∃Γ raised

` ∆ raised

` ∆,∀x:A raised

The notion of logic variable instantiation is captured by the notion of generalized
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substitution, defined below.

Generalized Substitutions θ ::= · | θ, y/x | θ,M :A/x

Generalized substitutions can be applied to LF variables, terms, spines, type families

and kinds. Applying generalized substitutions to LF variables yields either a variable

(in the case of universally quantified variables), or a term with its type (in the case of

existentially quantified variables). We present the defining equations for generalizes

substitution below. Note that, as usual, these equations should be viewed as being

nothing more than a more compact notation for inference rules. Although generalized

substitution application is decidable, it may, in general, be undefined.

(θ,M :A/x)x = M :A

(θ,M :A/x) y = (θ)y if y 6= x

(θ, y/x)x = y

(θ, y/x)x′ = (θ)x′ if x′ 6= x

θ (cM) = cN if θM = N

θ (xM) =

 y N

reduceA−(M,N)

if θ x = y and θM = N

if θ x = M :A and θM = N

θ (λx:A.M) = λy:B.N if θA = B and (θ, y/x)M = N and y#θ

θ (·) = ·

θ(M :: M) = N :: N if θM = N and θM = N

θ (aM) = aN if θM = N

θ (Πx:A.B) = Πy:A′.B′ if θA = A′ and (θ, y/x)B = B′ and y#θ

θ (type) = type

θ (Πx:A.K) = Πy:A′.K ′ if θA = A′ and (θ, y/x)K = K ′ and y#θ
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The typing rules for generalized substitutions are defined below.

gsub-nil

· ` · : ·

∆′ ` θ : ∆ θA = A′ |∆′| ` A′ : type
gsub-avar

∆′, ∀y:A′ ` θ, y/x : ∆, ∀x:A

∆′ ` θ : ∆ θA = A′ |∆′| `M : A′
gsub-evar

∆′ ` θ,M :A′/x : ∆,∃x:A

∆′ ` θ : ∆ |∆′| ` A : type
gsub-weak

∆′, ∃x:A ` θ : ∆

We proceed by proving some useful properties of generalized substitutions.

Lemma 5.2.1 (Typing Inversion for Generalized Substitutions)

1. If ∆′ ` θ : ∆,∀x:A then θ = θ0, y/x and ∆′ = ∆′0,∀y:A′,∃Γ and ∆′0 ` θ0 : ∆

and θ0A = A′

2. If ∆′ ` θ, y/x : ∆ then ∆ = ∆0,∀x:A and ∆′ = ∆′0, ∀y:A′,∃Γ and ∆′0 ` θ : ∆0

and θ0A = A′ and |∆′0| ` A′ : type

3. If ∆′,∀y:A′ ` θ : ∆ then θ = θ0, y/x and ∆ = ∆0,∀x:A and ∆′ ` θ0 : ∆0 and

θ0A = A′ and |∆′| ` A′ : type.

4. If ∆′ ` θ : ∆,∃x:A then θ = θ0,M :A′/x and ∆′ ` θ : ∆ and θ0A = A′ and

|∆′| `M : A′

5. If ∆′ ` θ,M :A/x : ∆ then ∆ = ∆0,∃x:A and ∆′ ` θ : ∆0 and |∆′| `M : A

6. If ∆′,∃y:A ` θ : ∆ then ∆′ ` θ : ∆ and |∆′| ` A : type

7. If ∆′ ` θ : · then θ = · and ∆′ = ∃Γ

8. If ∆′ ` · : ∆ then ∆ = · and ∆′ = ∃Γ

9. If · ` θ : ∆ then ∆ = · and θ = ·
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Proof: 1, 2, 4, 5, 7 and 8 are by straightforward inductions on the structures of the

given typing derivations; the others are direct, by cases. �

Lemma 5.2.2 (Properties of Generalized Substitutions) Let E be any of

{K,A,M,M}

1. If θE = E ′ and θE = E ′′ then E ′ = E ′′

2. If (θ,X/x, Y/y)E = E ′ and x#y, where X = x′ or X = M :A and Y = y′ or

y = N :A then (θ, Y/y,X/x)E = E ′

3. If x#E and either (θ, y/x)E = E ′ or (θ,M :A/x)E = E ′ then θE = E ′

4. If the free variables of E are among x1, . . . , xn, then (θ, x1/x1, . . . , xn/xn)E =

E

5. If x#θ and θE = E ′ then x#E ′

Proof: By straightforward inductions over the given derivations of generalized sub-

stitution application. Note that 4 can be described judgmentally, but that we use

the more informal ellipses for the sake of readability. �

Lemma 5.2.3 (Generalized and Hereditary Substitutions Commute) Let E

be any of {K,A,M,M}

1. If D : [M/x]τE = E ′ and (θ, y/x)E = E0 and θM = M0 then there exists some

E ′0 s.t. [M0/y]τE0 = E ′0 and θE ′ = E ′0

2. If D : reduceτ (M,N) = N ′ and θM = M0 and θN = N0 then there exists

some N ′0 s.t. reduceτ (M0, N0) = N ′0 and θN ′ = N ′0.

Proof: By mutual induction D. We show some representative cases below.
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1.

Case:

D =

D0

[M/x]τN = N ′

D1

reduceτ (M,N ′) = N ′

[M/x]τxN = N ′

(θ, y/x) (xN) = y N0 and (θ, y/x)M = M0 given

(θ, y/x)N = N0 by inversion on gsub application

reduceτ (M0, N0) = N ′0 and θN ′ = N ′0 by IH 2 on D1

[M0/y]τy N0 = N ′0 by rule

Case:

D =

D0

[M/x]τA = A′

D1

[M/x]τB = B′ x#z

[M/x]τΠz:A.B = Πz:A′.B′

(θ, y/x) Πz:A.B = Πz0:A0.B0 and (θ, y/x)M = M0 given

(θ, y/x)A = A0 and (θ, y/x, z0/z)B = B0

by inversion on gsub application

[M0/y]τA0 = A′0 and θA′ = A′0 by IH 1 on D0

(θ, z0/z, y/x)B = B0 by Lemma 5.2.2

[M0/y]τB0 = B′0 and (θ, z0/z)B′ = B′0 by IH 1 on D1

[M0/y]τΠz0:A0.B0 = Πz0:A′0.B
′
0 by rule

θΠz:A′.B′ = Πz0:A′0.B
′
0 by rule

2.
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Case:

D =

D0

[N/x]τM = M ′

D1

reduceβ(M ′, N) = N ′

reduceτ→β(λx:A.M,N :: N) = N ′

θ(λx:A.M) = λy:A0.M0 and θ(N :: N) = N0 :: N0 given

θA = A0 and (θ, y/x)M = M0 and θN = N0 and θN = N0

by inversion on gsub application

[N0/x]τM0 = M ′
0 and θM ′ = M ′

0 by IH 1 on D0

reduceτ (M
′
0, N0) = N ′0 and θN ′ = N ′0 by IH 2 on D1

reduceτ→β(λy:A0.M0, N0 :: N0) = N ′0 by rule

�

Lemma 5.2.4 (Generalized Substitutions are Simultaneous) If A− = τ and

E is any of {K,A,M,M} (θ,M ′:A/x)E0 = E ′ and (θ, y/x)E0 = E then [M ′/y]τE =

E ′

Proof: By straightforward induction on the structure of E0, using Lemma 5.2.3

clause 2. �

Lemma 5.2.5 (Weakening for Generalized Substitutions) For E in {K,A,M,M},

if y#E and θE = E ′ then (θ, y/x)E = E ′ and (θ,M :B/x)E = E ′

Proof: By a straightforward induction on the derivation of θE = E ′; note that x#θ

must hold in order for θ, y/x and θ,M :A/x to be well formed. �

Lemma 5.2.6 (Generalized Substitutions on Variables) If D : ∆′ ` θ : ∆

then:

1. If ∀x:A ∈ ∆ then θx = y and θA = B and ∀y:B ∈ ∆′
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2. If ∃x:A ∈ ∆ then θx = M :B and θA = B and |∆′| `M : B

3. If ∀x:A ∈ ∆ and ∀y:B ∈ ∆ and x#y then θx#θy

Proof: Each follows from a straightforward induction on the structure of D, using

Lemma 5.2.5 for both 1 and 2, and Weakening for Typing in 2. 3 uses the fact that

mixed prefix contexts cannot contain duplicate variable-name declarations. �

Lemma 5.2.7 (Generalized Substitutions) If ∆′ ` θ : ∆ then:

1. if ` |∆| : ctx then ` |∆′| : ctx

2. if D : |∆| ` K : kind then θK = K ′ and |∆′| ` A′ : kind

3. if D : |∆|; A `M : type and θA = A′ then θM = M ′ and |∆′|; A′ `M ′ : type

4. if D : |∆| ` A : type then θA = A′ and |∆′| ` A′ : type

5. if D : |∆|; A `M : B and θA = A′ then θM = M ′ and θB = B′ and

|∆′|; A′ `M ′ : B′

6. if D : |∆| `M : A then θM = M ′ and θA = A′ and |∆′| `M ′ : A′

Proof: 1 is by induction on the structure of ∆′ ` θ : ∆; 2-6 are by mutual inductions

on the structure of D. The non-trivial TERM-ATM-V case uses Theorem 5.1.12;

the FAM-LIST-CONS and TERM-LIST-CONS cases use Lemma 5.2.3. �

Definition 5.2.8 (Composition of Generalized substitutions) Generalized sub-

stitutions can be composed as follows.

θ ◦ · = θ

(θ, z/y) ◦ (θ′, y/x) = (θ ◦ θ′), z/x

(θ,M :A/z) ◦ (θ′, y′/x) = θ′ ◦ (θ′, y/x) if y#z and θ′y = y′

θ ◦ (θ′,M :A/x) = (θ ◦ θ′), N :B/x if θM = N and θA = B
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Lemma 5.2.9 (Composition of Generalized Substitutions) Let E be any of

{K,A,M,M}

1. If θ2 ◦ θ1 = θ then

(a) θ2(θ1 x) = y iff θx = y

(b) θ2(θ1 x) = M :A iff θx = M :A

(c) θ2(θ1E) = E ′ iff θE = E ′ where E is any of {K,A,M,M}

2. If ∆′′ ` θ2 : ∆′ and ∆′ ` θ1 : ∆ then there exists some θ s.t. θ2 ◦ θ1 = θ and

∆′′ ` θ : ∆

3. If θ0 ◦ θ1 = θ and θ0 ◦ θ1 = θ′ then θ = θ′

Proof: 1 (a) and (b) follow by a straightforward induction on the derivation of

θ2 ◦ θ1 = θ, whereas 1 (c) follows by induction on E. 2 follows by induction on the

natural sum of θ1 and θ2, using Lemma 5.2.1. 3 is by straightforward induction on

the derivation of θ0 ◦ θ1. �

Lemma 5.2.10 (Generalized Substitutions and Eta)

1. If D : M@M = N and θM = M ′ and θM = M ′ then there exists N ′ s.t.

M ′@M ′ = N and θN = N ′

2. If D : expandh(A;M) = N and x#h x#A and x#M then x#M

3. If D : expandx(A;M) = M0 and θx = y and θA = B and θM = N then there

exists an N0 s.t. θM0 = N0 and expandy(B;N) = N0

Proof: By straightforward induction on the structure of D. 1 and 2 are self-

contained (i.e. the induction is not mutual), whereas 3 uses 1 and 2. We show

the induction step for 3 below.
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D =

D0

expandz(A1; ·) = M z#M

D1

M@M = M ′

D2

expandx(A2;M ′) = M0

expandx(Πz:A1.A2;M) = λz:A1.M0

θx = y and θ(Πz:A1.A2) = Πz′:B1.B2 and θM = N given

x#z by renamability of bound variables

θA1 = B1 and (θ, z′/z)A2 = B2 and z′#θ by inversion on gsub app

z′#N by Lemma 5.2.2 no. 5

θ· = · by rule

expandx(B1; ·) = N and θM = N by IH 3 on D0

N@N = N ′ and θM ′ = N ′ by IH 1 on D1

(θ, z′/z)M0 = N0 and expandx(B2;N ′) = N0 by IH 3 on D1

(θ)λz:A1.M0 = λz′:B1.N0 by def of gsub app

expandx(Πz
′:B1.B2;N) = λz′:B1.N0 by rule

�

5.2.2 The Semantics of Logic Programming

Given LF terms M and N that are well-formed in the mixed-prefix context ∆, it is

natural to ask whether there is some instantiation in the logic variables of ∆ such

that M and N are indistinguishable. We refer to such a problem as a unification

equation, which we write ∆ `M •
= N . The solution to such an equation is a unifier,

which we define below. Unification will play an important role in defining proof

search.

Definition 5.2.11 (Unifiers) ∆′ ` θ : ∆ is a unifier (or solution) for the unifica-
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tion equation ∆ ` E •
= E ′ (for any E in {A,M,M,K}) iff θE = E ′′ and θE ′ = E ′′

and E is well-formed in |∆|. A unifier ∆′ ` θ : ∆ is a most general unifier for the

equation ∆ ` E •
= E ′ iff, for all unifiers ∆′′ ` θ′ : ∆, there exists ∆′′ ` θ′′ : ∆′ s.t.

θ′′ ◦ θ = θ′. We sometimes refer to θ as being a (most general) unifier when θ’s type

is clear from the context.

Unfortunately, unification is an undecidable problem for LF terms, and the ex-

istence of a solution to a unification equation does not guarantee the existence of a

most general unifier. However, there are algorithms that can solve a decidable subset

of the unification equations for LF, known as higher-order pattern matching for which

the existence of a unifier implies the existence of a most general unifier[Mil91]. We

assume that we are given the judgmental specification of such an algorithm, written

here as unify(∆ ` E •
= E ′)

∆′
=⇒ θ when the algorithm succeeds in finding a most

general unifier ∆′ ` θ : ∆ for E and E ′, and unify(∆ ` E •
= E ′) =⇒ fail when the

algorithm fails to find such a unifier. We view the following proposition as part of

the specification of unification. Its proof should be syntactically finitary.

Proposition 5.2.12 (Decidability, Well-Formedness of Unification) For ev-

ery E in {M,M,A,K}

1. either unify(∆ ` E •
= E ′)

∆′
=⇒ θ or unify(∆ ` E •

= E ′) =⇒ fail

2. If unify(∆ ` E •
= E ′)

∆′
=⇒ θ then ∆′ ` θ : ∆ and ` ∆′ raised and θ is a

(most general)2 unifier for E and E ′.

It should be noted that, although we do not require the unification algorithm to

be complete (indeed, no such algorithm exists), we do expect it to be nontrivial in

2The fact that θ is most general will not be used in any of our theorems; thus, we do not have
to worry about the quantifier alternations introduced by the notion of most general unifier taking
us out of the realm of the syntactically finitary.
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that it is capable of deciding an interesting subset of unification problems, such as

higher-order pattern matching.

Below we introduce the notion of proof search on LF terms as a model of computa-

tion. That is, given a mixed-prefix context ∆ and a goal type A (possibly containing

some logic variables), is it possible to find a term M and a generalized substitution

θ such that ∆′ ` θ : ∆ and ∆′ `M : θA? Such a search problem is referred to as a

query, which we write ∆ ` ? : A. In practice, queries performed on atomic-types

are the most interesting. This is because family-level constants can be thought of as

defining relations, where the terms M1, . . . ,Mn are “related” whenever aM1 . . . Mn

is inhabited. If we consider some elements of these relations to be inputs and others

to be outputs, LF type-families can provide convenient notations for functions. We

refer to the classification of the input and output arguments for a family-level con-

stant as its mode declaration. Mode declarations are provided by the user (i.e. at the

same level as the declaration of the signature Σ and the subordination relation v),

and every family-level constant that we wish to interpret as a logic program must be

given such a classification. Arguments that are classified as inputs are said to have

positive mode and arguments that are classified as outputs are said to have negative

mode.

More precisely, if a:K ∈ Σ, then K must have the form Πx0:A0. . . . Πxn:An.type;

a mode declaration for a consists of a user-level assignment of positive or negative

to each i in 0, . . . , n with the following restriction: if i has positive mode and j has

negative mode, then xj#Ai (that is, the types of inputs cannot depend on the types

of outputs). If a has a mode declaration, and the atomic type aM is well formed,

then M = M0 :: . . . :: Mn :: ·. We can then partition the spine M into two spines,

inputsa(M) and outputsa(M), where Mi is in inputsa(M) iff i is has positive mode,

and Mi is in outputsa(M) iff i has negative mode. Formally, we consider inputs
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and outputs to be user-specified syntactically finitary functions. It should be noted

that the fact that input arguments cannot depend on out put arguments guarantees

that both inputsa(M) and outputsa(M) are well-formed whenever M is. Thus, we

assume the following properties hold.

Lemma 5.2.13 (Inputs and Outputs)

1. inputsa(M) = inputsa(N) and outputsa(N) = outputsa(M) iff N = M

2. If θM = N then θ(inputsa(M)) = inputsa(N) and θ(outputsa(M)) =

outputsa(N)

Proof: Direct, by the definitions of inputs and outputs. �

It should be noted that it is possible for a mode declaration to be invalid; that

is, the term-level constants in Σ may not respect the mode declarations given by the

user. We postpone discussing mode checking until section 5.2.5.

We are finally ready to define the semantics of proof search. The judgment

fillTerm(∆0 ` ? : A0)
θ

=⇒ 〈∆; M ; A〉 formalizes the notion of search for terms: it

can be thought of as being recursive on the structure of A0, where in the base case—

i.e. A0 = aN—it nondeterministically chooses either a variable or constant whose

type has head a, then searches for a spine. The judgment fillHead(∆; Σ; a) =⇒ h:A

formalizes the nondeterministic choice of a variable or constant whose type A satisfies

hd(A) = a: it can be thought of as being recursive on the structure of Σ and ∆. The

judgment fillSpine(∆0;A0 ` ? : aN0)
θ

=⇒〈∆; A; M ; aN〉 the formalizes notion

of search for spines: it can be thought of as being recursive on the structure of

A0 For each of these judgments, the syntactic categories to the left of the arrow

can be thought of as inputs, and everything else as outputs. The intuition behind

each judgment is made more precise by Lemma 5.2.14 below. In essence, we are
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formalizing the logic-programming interpretation of judgments and inference rules

(here implemented as LF types and terms) using judgments and inference rules that,

intuitively, can be interpreted as logic programs. This sort of circularity is inevitable

in all foundational investigations, and ultimately must be justified by intuition.

unify(∆0 ` inputsa(N1) •= inputsa(N0)) ∆=⇒ θ θ(aN1) = aN
fs-atm

fillSpine(∆0; aN1 ` ? : aN0) θ=⇒〈∆; aN ; · ; aN〉

fillSpine(∆0,∃x0:A0;B0 ` ? : aN0)
θ,M :A/x0=⇒ 〈∆; B′; M ; aN〉 (θ, x/x0)B0 = B

fs-pi

fillSpine(∆0; Πx0:A0.B0 ` ? : aN0) θ=⇒〈∆; (Πx:A.B); (M :: M); aN〉

fillSpine(∆;B0 ` ? : aN0) θ=⇒〈∆; B; M ; aN〉 θA0 = A

fillTerm(∆ ` ? : A) θ′=⇒ 〈∆′; M ′; A′〉 θ′M = M ′ θ′B = B′ θ′aN = aN ′

fs-arr

fillSpine(∆0;A0 → B0 ` ? : aN0) θ
′◦θ=⇒〈∆′; A′ → B′; (M ′ :: M ′); aN ′〉

∀x:A ∈ ∆ hd(A) = a
fh-v

fillHead(∆; Σ′; a) =⇒ x:A

c:A ∈ Σ′ hd(A) = a
fh-c

fillHead(∆; Σ′; a) =⇒ c:A

fillHead(∆; Σ; a) =⇒ h:A0 fillSpine(∆0;A0 ` ? : aN0) θ=⇒〈∆; A; M ; aN〉
θ(aN0) = aN ′ unify(∆ ` outputsa(N) •= outputsa(N ′))

∆′=⇒ θ′

θ′M = M ′ θ′N ′ = N ′′

ft-atm

fillTerm(∆0 ` ? : aN0) θ′◦θ=⇒ 〈∆′; hM ′; aN ′′〉

fillTerm(∆0,∀x0:A0 ` ? : B0)
θ,x/x0=⇒ 〈∆,∀x:A; M ; B〉

ft-pi

fillTerm(∆0 ` ? : Πx0:A0.B0) θ=⇒ 〈∆; λx:A.M ; Πx:A.B〉

We think of the rule fs-pi as having the implicit side condition that x occurs freely

within B0 (i.e. Πx:A.B cannot be written as A → B), which we omit both for the

sake of brevity. In essence, the difference between fs-pi and fs-arr is the difference

between creating a subgoal to be found via proof search, and creating a logic variable

to be instantiated via unification; these rules are inspired by the Πl and →l rules of

the system U of [PW90].
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It should be noted that the above semantics for proof search is mode aware; that

is, the mode declarations given by the user affect the semantics of proof search.

This is a departure from what is actually implemented in other accounts of Logic

Programming based on LF [PW90, Pfe91, RP96, PS98], where unification would be

invoked only in the fs-atm rule, and on all of N0 and N1 rather than just the input

arguments. This simplifies the development of the metatheory of logic programming:

to do otherwise would require us to specify a unification algorithm that postpones

unsolvable unification problems as constraints, which would, in order to prove the

analog of Lemma 5.2.14, require a development of LF where the typing rules are

parameterized by equality constraints (see [Ree09] for a detailed sketch of what

would be involved). The mode-awareness of our semantics does not meaningfully

affect the execution of any of the programs considered in this dissertation.

Lemma 5.2.14 (Soundness of Filling)

1. If D : fillSpine(∆0;A0 ` ? : aN0)
θ

=⇒〈∆; A; M ; aN〉 and |∆0| ` A0 : type

and |∆0| ` aN0 : type then ∆ ` θ : ∆0 and ` ∆ raised and θA0 = A and

θ(inputsa(N0)) = inputsa(N) and |∆|; A `M : aN

2. If D : fillTerm(∆0 ` ? : A0)
θ

=⇒ 〈∆; M ; A〉 and |∆0| ` A0 : type then

∆ ` θ : ∆0 and ` ∆ raised and θA0 = A and |∆| `M : A

Proof: By mutual inductions on the structure of D. We show some representative

cases below.

Case:

D =

D0

fillSpine(∆0,∃x0:A0;B0 ` ? : aN0)
θ,M :A/x0=⇒ 〈∆; B′; M ; aN〉 (θ, x/x0)B0 = B

fs-pi

fillSpine(∆0; Πx0:A0.B0 ` ? : aN0) θ=⇒〈∆; (Πx:A.B); (M :: M); aN〉
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|∆0| ` Πx:A0.B0 : type and |∆0| ` aN0 : type given

|∆0| ` A0 : type and |∆0|, x0:A0 ` B0 : type by inversion for typing

|∆0|, x0:A0 ` aN0 : type by weakening for typing

∆ ` (θ,M :A/x0) : ∆0,∃x0:A0 and ` ∆ raised

and (θ,M :A/x0)B0 = B′ and (θ,M :A/x0)inputsa(N0) = inputsa(N)

and |∆|; B′ `M : aN by IH on D0

|∆| `M : A and θA0 = A and ∆ ` θ : ∆0 by Lemma 5.2.1

θ (Πx0:A0.B0) = Πx:A.B by rule

x#aN0 by Lemma 5.1.5

θ(inputsa(N0)) = inputsa(N) by Lemma 5.2.2, clause 3

[M/x]A−B = B′ by Lemma 5.2.4 and Lemma 5.2.2 clause 1

|∆|; Πx:A.B `M :: M : aN by rule

Case:

D =

D0

fillTerm(∆0,∀x0:A0 ` ? : B0)
θ,x/x0=⇒ 〈∆,∀x:A; M ; B〉

ft-pi

fillTerm(∆0 ` ? : Πx0:A0.B0) θ=⇒ 〈∆; (λx:A.M); (Πx:A.B)〉

|∆0| ` Πx0:A0.B0 : type given

|∆0| ` A0 : type and |∆0|, x0:A0 ` B0 : type by inversion on typing

∆,∀x:A ` θ, x/x0 : ∆0,∀x0:A0 and ` ∆,∀x:A raised

and (θ, x/x0)B0 = B and |∆,∀x:A| `M : B by IH on D0

∆ ` θ : ∆0 and θA0 = A by Lemma 5.2.1

` ∆ raised by inversion on raised

θ(Πx0:A0.B0) = Πx:A.B by rule

|∆| ` A : type by Lemmas 5.2.7 and 5.2.2

|∆| ` λx:A.M : Πx:A.B
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5.2.3 Groundness and Abstract Substitutions

We are interested in identifying a subset of well-behaved logic programs for the

purpose of proving their termination. In order to prove the termination of a query,

it we will need to be able to define a size metric on goal formulas, where the “size”

of a logic variable is considered infinite, since it can be replaced with any term.

To this end, we say that a term or spine is ground iff it contains no existentially-

quantified variables, excluding any that may occur in the type-labels of λ-abstractions

(we do not consider type labels to influence the sizes of terms). This concept is

formalized judgmentally below.

∆, ∀x:A `M g

∆ ` λx:A.M g

(h:A ∈ Σ or ∀h:A ∈ ∆) ∆ `M g

∆ ` hM g

∆ ` · g
∆ `M g ∆ `M g

∆ `M :: M g

Logic programming can be thought of as giving a computational interpretation to

relations; a program consists of searching for the inhabitants of a specified relation.

The mode checker is, in essence, an abstract interpretation that tells us when the

elements of the relation are treated consistently as the inputs to, or outputs from, a

function. We can think of generalized substitutions as being the value returned by

a successful query. As is typically the case with abstract interpretation, we need to

define an abstract domain of values. To this end, we define abstract substitutions in

the same manner as in [RP96] below.

Abstract Substitutions η ::= · | η,∀x:A | η,∃?x:A | η,∃gx:A
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In one sense are just mixed prefix contexts with a flag that determines which existen-

tial variables are assumed to be ground. In another sense, abstract substitutions can

be thought of as sets of generalized substitutions that obey these flags. In the first

sense, the judgment ∆ ` θ : η, whose rules are listed below, is merely a refinement

to the typing rules for generalized substitutions. In the second sense, ∆ ` θ : η can

be thought of as meaning “θ ∈ η.”

· ` · : ·

∆ ` θ : η θA = B |∆| ` B : type

∆, ∀y:B ` θ, y/x : η,∀x:A

∆ ` θ : η θA = B |∆| `M : B ∆ `M g

∆ ` θ,M :B/x : η,∃gx:A

∆ ` θ : η θA = B |∆| `M : B ∃y:B ∈ ∆ expandy(B; ·) = M

∆ ` θ,M :B/x : η,∃?x:A

∆ ` θ : η θA = B |∆| `M : B ∆ `M g

∆ ` θ,M :B/x : η,∃?x:A

∆ ` θ : η |∆| ` A : type

∆, ∃x:A ` θ : η

We should note that the judgment ∆ ` θ : η requires that θ be well-behaved in that

it can only map existential variables to terms which are either ground, or the eta-

expansion of another existential variable; baking this invariant into this judgment

simplifies the development of the metatheory of the mode-checker.

If ∆′ ` θ : ∆ then we say that η approximates θ if ∆′ ` θ : η, whenever ∆′ is

either arbitrary, or clear from the context.

We can convert between mixed prefix contexts and abstract substitutions in the

obvious ways: η∆ assigns the “unknown” flag to each existential variable in ∆, and ∆η

strips the flags in η. Under the set-interpretation of η, ∆η tells us the domain of the

generalized substitutions in η, and η∆ defines the set of all well-behaved generalized

substitutions whose domain is ∆. Both interpretations are reflected in Lemma 5.2.16.
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∆· = ·

∆η,∀x:A = ∆η, ∀x:A

∆η,∃?x:A = ∆η,∃x:A

∆η,∃gx:A = ∆η,∃x:A

η· = ·

η∆,∀x:A = (η∆),∀x:A

η∆,∃x:A = (η∆),∃?x:A

An abstract substitution can be converted to an ordinary LF context in much

the same way that a mixed prefix context can.

|·| = ·

|η,∀x:A| = |η|, x:A

|η,∃?x:A| = |η|, x:A

|η,∃gx:A| = |η|, x:A

The notion of groundness for abstract substitutions is the same as for mixed prefix

contexts, but with the following extra rule, which, under the set interpretation of η,

says that for every θ in η, θM is ground. This is justified by Lemma 5.2.16.

∃gx:A ∈ η η `M g

η ` xM g

We also find it useful to define the judgment η′ ` θ : η. If we interpret abstract

substitutions as contexts, then the interpretation of the judgment is straightforward.

If we interpret abstract substitutions as sets, then we can think of η′ ` θ : η as saying
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that, for any θ′ in η′, θ′ ◦ θ is in η.

· ` · : ·

η′ ` θ : η θA = B |η′| ` B : type

η′, ∀y:B ` θ, y/x : η,∀x:A

η′ ` θ : η θA = B |η′| `M : B η′ `M g

η′ ` θ,M :B/x : η,∃gx:A

η′ ` θ : η θA = B |η′| `M : B ∃?y:B ∈ η′ expandy(B; ·) = M

η′ ` θ,M :B/x : η,∃?x:A

η′ ` θ : η θA = B |η′| `M : B η′ `M g

η′ ` θ,M :B/x : η,∃?x:A

η′ ` θ : η |η′| ` A : type

η′,∃x:A ` θ : η

Lemma 5.2.15

1. For every ∆, |∆| = |η∆|

2. For every η, |η| = |∆η|

Proof: By straightforward induction on the structure of the given mixed-prefix con-

text or abstract substitution. �

Lemma 5.2.16 (Abstract and Generalized Substitutions)

1. If ∆′ ` θ : ∆ then ∆′ ` θ : η∆

2. If ∆′ ` θ : η then η∆′ ` θ : η

3. If ∆′ ` θ : η then ∆ ` θ : ∆η

4. If η′ ` θ : η then ∆η′ ` θ : ∆η

Proof: Each is by straightforward induction on the given derivation, using Lemma 5.2.15.

�
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Lemma 5.2.17 (Abstract Inclusion) If ∆′ ` θ : ∆ and ∆′ ` θ : η then ∆η = ∆

Proof: By a straightforward induction on either of the typing derivations. �

Lemma 5.2.18 (Weakening for Groundness)

1. If ∆ can be obtained from ∆′ by deleting some number of declarations then:

(a) If ∆ `M g then ∆′ `M g

(b) If ∆ `M g then ∆′ `M g

2. If η can be obtained from η′ by deleting some number of declarations then:

(a) If η `M g then η′ `M g

(b) If η `M g then η′ `M g

Proof: By straightforward simultaneous induction on the structure of the given

groundness derivation. �

Lemma 5.2.19 (Hereditary Substitutions Preserve Groundness)

1. If ∆ `M g then:

(a) If ∆ `M g and reduceτ (M,M) = N then ∆ ` N g

(b) If ∆ `M ′
g and [M/x]τM

′ = N then ∆ `M ′
g

(c) If ∆ `M g and [M/x]τM = N then ∆ ` N g

(d) If ∆ ` A g and [M/x]τA = B then ∆ ` B g

2. If η `M g then:

(a) If η `M g and reduceτ (M,M) = N then η ` N g

(b) If η `M ′
g and [M/x]τM

′ = N then η `M ′
g
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(c) If η `M g and [M/x]τM = N then η ` N g

(d) If η ` A g and [M/x]τA = B then η ` B g

Proof: 1 is by straightforward simultaneous induction on the derivation of the given

hereditary substitution, using Lemma 5.2.18; 2 analogous. �

Lemma 5.2.20 (Generalized Substitutions Preserve Groundness)

1. If ∆′ ` θ : ∆ then:

(a) If ∆ `M g and θM = N then ∆′ ` N g

(b) If ∆ `M g and θM = N then ∆′ ` N g

2. If ∆ ` θ : η then:

(a) η `M g and θM = N then ∆ ` N g

(b) η `M g and θM = N then ∆ ` N g

3. If η′ ` θ : η then:

(a) η `M g and θM = N then η′ ` N g

(b) η `M g and θM = N then η′ ` N g

Proof: 1 is by straightforward induction on the derivation of the given hereditary

substitution, using Lemma 5.2.19. 2 and 3 are analogous.

�

Lemma 5.2.21 (Expansion and Groundness) If D : expandh(A;M) = M then:

1. if ∆ `M g and h = c or (h = x and ∀x:B ∈ ∆) then ∆ `M g

2. if η ` M g and h = c or (h = x and either ∀x:B ∈ ∆ or ∃x:B ∈ ∆) then

η `M g
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Proof: Each case is by straightforward induction on the structure of D. �

Lemma 5.2.22 (Groundness of Inputs and Outputs)

1. ∆ `M g iff ∆ ` inputsa(M) g and ∆ ` outputsa(M) g

2. ∆ `M g iff ∆ ` inputsa(M) g and ∆ ` outputsa(M) g

Proof: Direct, by definition of inputs and outputs. �

Given a well-typed generalized substitution θ, it may be the case that θ is ap-

proximated by more than one η; for example, if ∆ ` θ : η,∃gx:A, η′ then ∆ ` θ :

η,∃?x:A, η′.

Lemma 5.2.23 (Subtyping for Abstract Substitutions)

1. If ∆ ` θ : η0,∃gx:A, η1 then ∆ ` θ : η0,∃?x:A, η1

2. If η ` θ : η0,∃gx:A, η1 then η ` θ : η0,∃?x:A, η1

3. If η0,∃?x:A, η1 ` θ : η then η0,∃gx:A, η1 ` θ : η

Given two abstract substitutions η and η′ which approximate the same substitu-

tion θ, we can conclude that any existentially-quantified variable which is marked as

ground in either η or η′ must be ground. Thus, we define η u η′ as the meet of the

groundness information in η and η′; under the set interpretation, we can think of u
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as intersection.

· u · = ·

(η,∀x:A) u (η′,∀x:A) = (η u η′),∀x:A

(η,∃?x:A) u (η′,∃?x:A) = (η u η′),∃?x:A

(η,∃gx:A) u (η′,∃?x:A) = (η u η′),∃gx:A

(η,∃?x:A) u (η′,∃gx:A) = (η u η′),∃gx:A

(η,∃gx:A) u (η′,∃gx:A) = (η u η′),∃gx:A

Lemma 5.2.24 (Properties of u)

1. (a) If η `M g then η u η′ `M g

(b) If η `M g then η u η′ `M g

2. If η = η0, η1 and η′ = η′0, η
′
1 then η u η′ = η′′ iff η′′ = η′′0 , η

′′
1 and η0 u η′0 = η′′0

and η1 u η′1 = η′′1

3. η = η u η

4. η u η′ = η′ u η

5. If η u η∆ = η′ then η′ = η

Proof: 1 is by a straightforward simultaneous induction on the structure of g; the

others are by induction on the structure of η �

Lemma 5.2.25 (Soundness of u)

1. If ∆ ` θ : η and ∆ ` θ : η′ then ∆ ` θ : η u η′
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2. If η0 ` θ : η1 and η0 ` θ : η′1 then η0 ` θ : η1 u η′1

3. If η0 ` θ : η1 and η′0 ` θ : η1 then η0 u η′0 ` θ : η1

4. If η0 ` θ : η1 and η′0 ` θ : η′1 then η0 u η′0 ` θ : η1 u η′1

Proof: Each case is by straightforward induction on one of the given typing deriva-

tions. �

The notion of a pattern spine, inspired by a similar definition in [Roh96] will be

important in our discussion of the properties of unification and in the definition of

the mode/termination checker. We define pattern spines judgmentally below. Note

that, unlike most of our judgments, ∆ ` M pattern and η ` M pattern can be

inhabited when ∆ and η are ill-formed, and moreover, M may contain free variable

not declared in ∆ or η.

∆ ` · pattern

∀x:A ∈ ∆ expandx(A; ·) = M x#M ∆ `M pattern

∆ `M :: M pattern

η ` · pattern

∀x:A ∈ η expandx(A; ·) = M x#M η `M pattern

η `M :: M pattern

Lemma 5.2.26 (Patterns are Ground)

1. If ∆ `M pattern then ∆ `M g

2. If η `M pattern then η `M g

Proof: By straightforward induction on the given derivations, using Lemma 5.2.21.

�

Lemma 5.2.27 (Pattern Conversion)

1. If ∆ `M pattern then η∆ `M pattern
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2. If η `M pattern then ∆η `M pattern

Proof: Each case is by a straightforward induction on the given derivation. �

Lemma 5.2.28 (Weakening for Patterns)

1. If ∆ `M pattern then ∆′,∆ `M pattern

2. If η `M pattern then η′, η `M pattern

Proof: By induction on the structure of the given derivations. �

Lemma 5.2.29 (Pattern Freshness)

1. If x#∆ and ∆ `M pattern then x#M

2. If x#η and η `M pattern then x#M

3. If x#M and ∆,∀x:A,∆′ `M pattern then ∆,∆′ `M pattern

4. If x#M and η,∀x:A, η′ `M pattern then η, η′ `M pattern

Proof: Each case is by straightforward induction on the structure of M , using

Lemma 5.1.22 in 1 and 2 �

Lemma 5.2.30 (Substitution Splitting)

1. If D : (∆′ ` θ : ∆0,∆1) then ∆′ = ∆′0,∆
′
1 and θ = θ0, θ1 and ∆′0 ` θ0 : ∆0

2. If D : (∆ ` θ : η0, η1) then ∆ = ∆0,∆1 and θ = θ0, θ1 and ∆0 ` θ0 : η0

3. If D : (η′ ` θ : η0, η1) then η = η′0, η
′
1 and θ = θ0, θ1 and η′0 ` θ0 : η0

Proof: Each case is by a straightforward induction on the structure of D. �

Lemma 5.2.31 (Abstract Substitutions on Variables)
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1. If D : (∆ ` θ : η) then:

(a) If ∀x:A ∈ η then θx = y, and θA = B and ∀y:B ∈ ∆

(b) If ∃?x:A ∈ η then θx = M :B and θA = B and |∆| `M : B

(c) If ∃gx:A ∈ η then θx = M :B and θA = B and |∆| `M : B and ∆ `M g

(d) If ∀x:A ∈ η and ∀y:B ∈ η and x#y then θx#θy

2. If D : (η′ ` θ : η) then:

(a) If ∀x:A ∈ η then θx = y, and θA = B and ∀y:B ∈ η′

(b) If ∃?x:A ∈ η then θx = M :B and θA = B and |η′| `M : B

(c) If ∃gx:A ∈ η then θx = M :B and θA = B and |η′| `M : B and η′ `M g

(d) If ∀x:A ∈ η and ∀y:B ∈ η and x#y then θx#θy

Proof: Analogous to Lemma 5.2.6. Each case is by induction on D. All cases use

Lemma 5.2.5, the (b) and (c) cases use Weakening for Typing and the (c) cases uses

Weakening for Groundness. The (d) cases use the fact that mixed-prefix contexts

and abstract substitutions cannot contain duplicate variable name declarations.

�

Lemma 5.2.32 (Properties of Split Substitutions)

1. If D : (∆′0,∆
′
1 ` θ0, θ1 : ∆0,∆1) and ∆′0 ` θ0 : ∆0 then:

(a) If ∆′′0 ` θ0 : ∆0 then ∆′′0,∆
′
1 ` θ0, θ1 : ∆0,∆1

(b) If ∀x:A ∈ ∆1 then θx = y and θA = B and ∀y:B ∈ ∆′1

2. If D : (∆′0,∆
′
1 ` θ0, θ1 : η0, η1) and ∆′0 ` θ0 : η0 then:

(a) If ∆′′0 ` θ0 : η0 then ∆′′0,∆
′
1 ` θ0, θ1 : η0, η1
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(b) If ∀x:A ∈ η1 then θx = y and θA = B and ∀y:B ∈ ∆′1

3. If D : (η′0, η
′
1 ` θ0, θ1 : η0, η1) and η′0 ` θ0 : η0 then:

(a) If η′′0 ` θ0 : η0 then η′′0 , η
′
1 ` θ0, θ1 : η0, η1

(b) If ∀x:A ∈ η1 then θx = y and θA = B and ∀y:B ∈ η′1

Proof: Each case is by straightforward induction on D; the (b) cases use weakening

for Typing and Lemma 5.2.2.

�

Lemma 5.2.33 (Substitutions Respect Patterns)

1. If ∆′ ` θ : ∆ then:

(a) If ∀x:A ∈ ∆ and x#M and ∆ `M pattern then θx#θM

(b) If ∆ = ∆0,∆1 and ∆′ = ∆′0,∆
′
1 and θ = θ0, θ1 and ∆′0 ` θ0 : ∆0 and

∆1 `M pattern and θM = N then ∆1 ` N pattern

2. If ∆ ` θ : η then:

(a) If ∀x:A ∈ η and x#M and η `M pattern then θx#θM

(b) If η = η0, η1 and ∆ = ∆0,∆1 and θ = θ0, θ1 and ∆0 ` θ0 : η0 and

η1 `M pattern and θM = N then ∆1 ` N pattern

3. If η′ ` θ : η then:

(a) If ∀x:A ∈ η and x#M and η `M pattern then θx#θM

(b) If η = η0, η1 and ∆′ = ∆′0,∆
′
1 and θ = θ0, θ1 and η′0 ` θ0 : η0 and

η1 `M pattern and θM = N then η′1 ` N pattern
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Proof: The (a) cases are all by induction on the given derivation of pattern,

using Lemmas 5.1.22, Lemma 5.2.10, either Lemma 5.2.6 or Lemma 5.2.31, and

Lemma 5.2.10. The (b) cases are also by induction on the given derivation of

pattern, using Lemma 5.2.32, the appropriate part (a) and Lemma 5.2.10. �

Lemma 5.2.34 (Strengthening for Groundness)

1. If ∆ can be obtained from ∆′ by deleting some number of declarations then:

(a) if |∆| `M : A and ∆′ `M g then ∆ `M g

(b) if |∆|; A `M : B and ∆′ `M g then ∆ `M g

2. If η can be obtained from η′ by deleting some number of declarations then:

(a) if |η| `M : A and η′ `M g then η `M g

(b) if |η|; A `M : B and η′ `M g then η `M g

Proof: 1 is by a straightforward simultaneous induction over the structure of the

given typing derivations. 2 is analogous.

�

In some instances, we can reason backwards about the behavior of generalized

substitutions with respect to groundness information. For example, if it is known

that θM is a ground term, then it must be the case that, for every logic variable

x that occurs rigidly in M , θx is ground. Thus, given ∆ and M , we can use this

observation define an abstract-substitution that characterizes the set of generalized

substitutions that ground M . We write this judgment ∆ ` M g=⇒ η, and specify

its rules (taken directly from [Roh96]) below.
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∆,∀x:A `M g=⇒ η,∀x:A

∆ ` λx:A.M g=⇒ η

∀x:∈∆ ∆ `M g=⇒ η

∆ ` xM g=⇒ η

c:A ∈ Σ ∆ `M g=⇒ η

∆ ` cM g=⇒ η

∆′ `M pattern |∆,∃x :A,∆′|; A `M : aN

∆,∃x:A,∆′ ` xM g=⇒ η∆,∃gx:A, η∆′

∆,∃x:A,∆′ ` xM g=⇒ η∆, ∃?x:A, η∆′

∆ ` · g=⇒ η∆

∆ `M g=⇒ η ∆ `M g=⇒ η′

∆ `M :: M g=⇒ (η u η′)

We lifting this judgment to abstract substitutions below.

η,∀x:A `M g=⇒ η′,∀x:A

η ` λx:A.M g=⇒ η′

∀x:A ∈ η η `M g=⇒ η′

η ` xM g=⇒ η′

η1 `M pattern |η0, ∃?x:A, η1|; A `M : aN

η0, ∃?x:A, η1 ` xM g=⇒ η0, ∃gx:A, η1 η0, ∃?x:A, η1 ` xM g=⇒ η0, ∃?x:A, η1

∃gx:A ∈ η

η ` xM g=⇒ η η ` · g=⇒ η

η `M g=⇒ η′ η `M g=⇒ η′′

η `M :: M g=⇒ η′ u η′′

Lemma 5.2.35 (Groundness Inversion for Patterns)

If ∆ and ∆′ are disjoint and D : (|∆| `M : A) and E : (reduceA−(M,N) = M ′)

and F : (∆′ ` N pattern) and ∆,∆′ `M ′
g then ∆ `M g.

Proof: By induction on the structure of E .
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Case:

D =

D0

|∆| ` A1 : type

D1

|∆, ∀x:A1| `M : A2

|∆| ` λx:A1.M : Πx:A1.A2

E =

E0

[N/x]A−1 M = N ′

E1

reduceA−2
(N ′, N) = M ′

reduceA−1 →A
−
2

(λx:A1.M,N :: N) = M ′

F =

∀x:A ∈ ∆′,∀x:A,∆′′

F0

expandx(A; ·) = N x#N

F1

∆′, ∀x:A,∆′′ ` N pattern

∆′, ∀x:A,∆′′ ` N :: N pattern

Note that the x in λx:A1.M and the x in ∆′,∀x:A,∆′′ can be assumed to be

the same, by the renamability of bound variables and the fact that x doesn’t

occur in ∆.

∆ is disjoint from ∆′, ∀x:A,∆′′

and ∆,∆′,∀x:A,∆′′ `M ′
g given

|∆|, x:A1 ` N : A1 by Theorem 5.1.25

[N/x]A−1 M = M by Theorem 5.1.25

N ′ = M by Lemma 5.1.3

∆′,∆′′ ` N pattern by Lemma 5.2.29

∆,∀x:A1 `M g by IH on E1

∆ ` λx:A1.M g by rule

Case:

E = reduceτ (M, ·) = M

∆ disjoint from ∆′ and |∆| `M : A
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and ∆′ ` · pattern and ∆,∆′ `M g given

∆ `M g by Lemma 5.2.34

�

Lemma 5.2.36 (Reasoning Backwards About Groundness)

1. If ∆′ ` θ : ∆ then:

(a) if D : (∆ `M g=⇒ η) and θM = N and ∆′ ` N g then ∆ ` θ : η

(b) If D : (∆ `M g=⇒ η) and θM = N and ∆′ ` N g then ∆ ` θ : η

2. If ∆ ` θ : η then:

(a) if D : (η `M g=⇒ η′) and θM = N and ∆ ` N g then ∆ ` θ : η′

(b) If D : (η `M g=⇒ η′) and θM = N and ∆ ` N g then ∆ ` θ : η′

Proof: Each case is by simultaneous induction on the structure of D, where the

proofs for 1 and 2 are essentially the same. We show the interesting cases of 2 below.

1.

Case:

D =

D0

η1 `M pattern

D1

|η0,∃?x:A, η1|; A `M : aN

η0,∃?x:A, η1 ` xM g=⇒ η0, ∃gx:A, η1

∆ ` θ : η0,∃?x:A, η1 and θ(xM) = N and ∆ ` N g given

θx = N0:B and θA = B by Lemma 5.2.31

θM = N0 and reduceB−(N0, N0) = N by inversion on gsub app

∆ = ∆0,∆1 and θ = θ0,M :B/x, θ1 and ∆0 ` θ′0 : η0, ∃?x:A

by Lemma 5.2.30
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θ′0 = θ0, N0:B/x and |∆0| `M : B and ∆0 ` θ0 : η0

by inversion on abs sub typing and Lemma 5.2.2

∆1 ` N0 pattern by Lemma 5.2.33

∆0 ` N0 g by Lemma 5.2.35

∆0 ` θ0 : η0,∃gx:A by rule

∆ ` θ : η0,∃gx:A, η1 by Lemma 5.2.32

2.

Case:

D =

D0

η `M g=⇒ η′

D1

η `M g=⇒ η′′

η `M :: M g=⇒ η′ u η′′

∆ ` θ : η and θ(M :: M) = N :: N ′ and ∆ ` N :: N g given

θM = N and θM = N by inversion on gsub app

∆ ` N g and ∆ ` N g by inversion on groundness

∆ ` θ : η′ by IH on D0

∆ ` θ : η′′ by IH on D1

∆ ` θ : η′ u η′′ by Lemma 5.2.25

�

Lemma 5.2.37 (Ground Terms Yield Trivial Information)

1. (a) If ∆ `M g and ∆ `M g=⇒ η then η = η∆

(b) If ∆ `M g and ∆ `M g=⇒ η then η = η∆

2. (a) If η `M g and η `M g=⇒ η′ then η′ = η

(b) If η `M g and η `M g=⇒ η′ then η′ = η
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Proof: 1 is by straightforward simultaneous induction on the given derivation of

groundness, using Lemma 5.2.24; 2 is analogous. �

The following lemma plays a crucial role in the soundness of our termination/mode

checker.

Lemma 5.2.38 (Abstract Unification)

1. If ∆′ ` θ : ∆ then:

(a) if D : (∆ ` M g=⇒ η) and θM = M ′ then ∆′ ` M ′
g=⇒ η′ and

η ` θ : η′

(b) if D : (∆ ` M g=⇒ η) and θM = M ′ then ∆′ ` M ′ g=⇒ η′ and

η ` θ : η′

2. If ∆ ` θ : η then:

(a) if D : (η ` M g=⇒ η′) and θM = M ′ then ∆ ` M ′
g=⇒ η′′ and

η′′ ` θ : η′

(b) if D : η `M g=⇒ η′ and θM = M ′ then ∆ `M ′ g=⇒ η′′ and η′′ ` θ : η′

3. If η′0 ` θ : η0 then:

(a) If D : (η0 ` M g=⇒ η1) and θM = M ′ then η′0 ` M ′
g=⇒ η′1 and

η′1 ` θ : η1

(b) If D : (η0 ` M g=⇒ η1) and θM = M ′ then η′0 ` M ′ g=⇒ η′1 and

η′1 ` θ : η1

Proof: Each numbered case is by simultaneous induction on D, where the reasoning

is essentially the same each time. We show the interesting cases of 2 below.
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1(a)

Case:

D =

D0

η1 `M pattern

D1

|η0, ∃?x:A, η1|; A `M : aN

η0,∃?x:A, η1 ` xM g=⇒ η0, ∃gx:A, η1

∆ ` θ : η0,∃?x:A, η1 and θ(xM) = M ′ given

θx = N :B and θM = M ′ and reduceB−(N,M ′) = M ′

by inversion on gsub app

∆ = ∆0,∆1 and θ = θ′0, θ1 and ∆0 ` θ′0 : η0,∃?x:A by Lemma 5.2.30

θ′0 = θ0, N :B/x and ∆0 ` θ0 : η0 and |∆0| ` N : B and θA = B

and either ∆0 ` N g or (∃y:B ∈ ∆0 and expandy(B; ·) = N)

by inversion on abs sub typing

Assume ∆0 ` N g Case 1

let η′′ = η∆

∆1 `M ′ pattern by Lemma 5.2.33

∆ `M ′ pattern by Lemma 5.2.28

∆ `M ′ g by Lemma 5.2.26

∆ `M ′
g by Lemma 5.2.20

∆ `M ′
g=⇒ η′′ by Lemma 5.2.37

∆0 ` (θ0, N :B/x) : (η0,∃gx:A) by rule

∆ ` θ : η0,∃gx:A, η1 by Lemma 5.2.32

η′′ ` θ : η0,∃gx:A, η1 by Lemma 5.2.16

Assume ∃y:B ∈ ∆0 and expandy(B; ·) = N Case 2

N = yM ′ by Theorem 5.1.25 and Lemma 5.1.3

∆0 = ∆′0,∃y:B,∆′′0 by inversion on ∃y:B ∈ ∆0
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Let η′′ = η∆′0
,∃gy:B, η∆′′0

, η∆1

∆1 `M ′ pattern by Lemma 5.2.33

∆′′0,∆1 `M ′ pattern by Lemma 5.2.28

η∆′′0
, η∆1 `M ′ pattern by Lemma 5.2.27

∆ ` θ : ∆η0,∃?x:A,η1 By Lemma 5.2.16

θ(aN) = aN ′ and |∆|; B `M ′ : aN ′

by Lemma 5.2.7 and Lemma 5.2.2

∆ `M ′
g=⇒ η′′ by rule

η∆0 ` θ0 : η0 by Lemma 5.2.16

η∆′0
,∃gy:B, η∆′′0

` θ0 : η0 by Lemma 5.2.23

η∆′0
,∃gy:B, η∆′′0

` N g by Lemma 5.2.21

η∆′0
,∃gy:B, η∆′′0

` (θ0, N :B) : η0,∃gx:A by rule

η′′ ` θ′′ : η0,∃gx:A, η1 by Lemma 5.2.32

1(b)

Case:

D =

D0

η `M g=⇒ η′0

D1

η `M g=⇒ η′1

η `M :: M g=⇒ η′0 u η′1

∆ ` θ : η and θ(M :: M) = M ′ :: M ′ given

θM = M ′ and θM = θM ′ by inversion on gsub app

∆ `M ′
g=⇒ η′′0 and η′′0 ` θ : η′0 by IH 1 on D0

∆ `M ′ g=⇒ η′′1 and η′′1 ` θ : η′1 by IH 2 on D1

∆ `M ′ :: M ′ g=⇒ η′′0 u η′′1 by rule

η′′0 u η′′1 ` θ : η′0 u η′1 by Lemma 5.2.24

�
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Lemma 5.2.39 (Weakening for Ground Implication)

1. If |∆| ` A : type then:

(a) if D : (∆,∆′ ` M g=⇒ η) then η = η0, η1 and ∆0,∀x:A,∆1 ` M g=⇒

η0,∀x:A, η1 and ∆0, ∃x:A,∆1 `M g=⇒ η0,∃?x:A, η1

(b) if D : (∆,∆′ ` M g=⇒ η) then η = η0, η1 and ∆0,∀x:A,∆1 ` M g=⇒

η0,∀x:A, η1 and ∆0, ∃x:A,∆1 `M g=⇒ η0,∃?x:A, η1

2. If |η0| ` A : type then:

(a) if D : (η0, η1 ` M g=⇒ η′) then η = η′0, η
′
1 and η0,∀x:A, η1 ` M g=⇒

η′0,∀x:A, η′1 and η0,∃?x:A, η1 ` M g=⇒ η′0, ∃?x:A, η′1 and η0,∃gx:A, η1 `

M g=⇒ η′0,∃gx:A, η′1

(b) if D : (η0, η1 ` M g=⇒ η′) then η = η′0, η
′
1 and η0,∀x:A, η1 ` M g=⇒

η′0,∀x:A, η′1 and η0,∃?x:A, η1 ` M g=⇒ η′0, ∃?x:A, η′1 and η0,∃gx:A, η1 `

M g=⇒ η′0,∃gx:A, η′1

Proof: Each case is by straightforward induction on the structure of D; the (b) cases

use the (a) cases, and the (a) cases use Lemma 5.2.24. �

5.2.4 Size Ordering

In general, finding a solution to a query using fillTerm will, via the fs-arr case of

fillSpine, requires the solution of some number of subgoals. In order to know that

this process terminates, we need to know that every subgoal is, in some sense, smaller

than the goal that spawned it. For example, any goal of the form add zM N should

be considered smaller than any subgoal of the form add (s z)M ′N ′, given that z is

considered smaller than s z. Thus, given some well-founded ordering on LF-terms, it
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should be possible to prove the termination of proof-search based on this ordering.

However, we do need to be careful. Consider proof search on the following signature,

where the sole argument to p is moded positive.

. . . , p:nat→ type,

f : Πx:nat.(p x)→ (p (s x))

It would be tempting to conclude that any well-typed query of the form ∆ `

? : pM will terminate (unsuccessfully, as we have omitted any base case for p),

since it seems as though x should always be smaller than s x. However, this sort

of reasoning is invalid when querying for non-ground terms. For example, the (ill-

moded) query ·,∃y:nat ` ? : p y will not terminate in our semantics (nor would an

equivalent example in Prolog), because each subgoal generated by fillSpine will,

after unification, be essentially the same as the original goal before unification. Our

mode/termination checker will rule out such bad queries by guaranteeing that input

arguments are always ground before fillTerm is called, meaning that our notion of

well-founded ordering on LF terms need only be defined on ground terms.

To this end, we assume the existence of a semantic domain S that comes equipped

with a notion of well-founded ordering (the semantic ordering), and a semantic map-

ping, written [[M ]] ∆, that maps terms M that are both well-typed and ground in

∆ to elements of S. For example, S could be the term-algebra corresponding to the

natural numbers, where [[M ]] ∆ counts the number of constants and variables in

M . Although we use the word “semantic” here, it should be noted that S, [[M ]] ∆,

semantic equality and the semantic ordering should be defined using the same syn-

tactic machinery as elsewhere in this thesis, although we treat the well-foundedness

of the semantic ordering as an axiomatic assumption. We list some of properties that

we expect of a semantic domain and the semantic mapping below.
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Definition 5.2.40 (Semantic Domain) A syntactic category S is a semantic do-

main iff there exist the binary relation < on the elements of S, and the partial-

function [[−]] (−) from terms and mixed-prefix contexts to elements of S that satisfy

the following properties.

1. (Semantic Ordering) <s is a transitive, well-founded ordering.

2. (Semantic Mapping) If |∆| `M : A and ∆ `M g then there exists some S in

S such that [[M ]] ∆ = S.

3. (Substitution) If ∆′ ` θ : ∆ and ∆ ` M g and θM = M ′ and [[M ]] ∆ = S and

[[M ′]] ∆′ = S ′ then S ′ = S.

4. (Weakening) If [[M ]] ∆ = S and ∆ can be obtained from ∆′ by deleting some

number of declarations, then [[∆′]]M = S

Example 5.2.41 (Semantic Domain for LPO) The proof terms from Chapter 4

can be represented in LF via a straightforward adequate encoding (for details, see

http://www.twelf.org/lpo/). Let S be the syntactic category of finite labeled trees

over the signature defined in Section 4.2.2, as ordered by <lpo , and let [[M ]] ∆ be

defined in the same manner as [[CF ]] where M is the LF-encoding of CF . S is a

semantic domain for this LF encoding.

We leave a description of how this semantic domain can be generalized to arbitrary

LF signatures to future work.

In the following example, we see how natural numbers can be used to justify the

subterm ordering we have used throughout this dissertation.

Example 5.2.42 (Semantic Domain for Subterm Ordering) The syntactic cat-

egory of natural numbers under the usual ordering < can be used as a semantic do-

main for any LF signature. The stripping function [[M ]] ∆ and its generalization
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to spines [[M ]] A; ∆ are defined judgmentally below. Note that the relation ≡ holds

whenever two type-families are mutually recursive; its use in the spine stripping func-

tion is motivated by considerations discussed in Section 2.1.

[[M ]] ∆,∀x:A = n

[[λx:A.M ]] ∆ = n

∀x:A ∈ ∆ [[M ]]A; ∆ = n

[[xM ]] ∆ = s n

c:A ∈ Σ [[M ]]A; ∆ = n

[[cM ]] ∆ = s n

[[·]] aN ; ∆ = z

hd(A) ≡ hd(B) [[M ]] ∆ = n0 [[M ]]B; ∆ = n1 add(n0; n1; n)

[[M :: M ]] Πx:A.B; ∆ = n

hd(A) 6≡ hd(B) [[M ]]B; ∆ = n

[[M :: M ]] Πx:A.B; ∆ = n

The proof that this forms a valid semantic domain is straightforward.

Each semantic domain gives rise to an induction principle over LF terms. For the

remainder of this section, we assume that the choice of semantic domain S is fixed,

although we choose to leave it abstract for now. Later we will consider the impact

that the strength of the semantic ordering has on our termination argument.

The semantic domain gives us a well-founded ordering on LF terms, but, in gen-

eral, it is build up more complex well-founded orderings from simpler ones; for exam-

ple lexicographic orderings have already been used several times in this document.

Thus, if the Ackermann function is encoded in LF as ack:nat→ nat→ nat→ type,

then it should be possible to specify that any query of the form ∆ ` ? : ackM1M2M3

is smaller than any query of the form ∆′ ` ? : ack N1N2N3 whenever either

[[∆]]M1 <s [[∆′]]N1 or [[∆]]M1 = [[∆′]]N1 and [[∆]]M2 <s [[∆′]]N2. To this end, we

define termination measures below.

Termination Measures O ::= M | lex〈O1;O2〉 | simul〈O1;O2〉

The lex and simul constructors can be thought of as providing lexicographic and

simultaneous termination orderings. Although we could add a termination order for
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the empty measure and the commutative version of the simultaneous ordering, we

omit their specifications for the sake of simplicity.

We lift the notions of typing, groundness and generalized substitutions to termi-

nation measures in the straightforward way. We list the names and descriptions of

the relevant judgments in the table below, but omit their inference rules for the sake

of brevity.

Γ ` O wellTyped every M in O satisfies Γ `M : A

∆ ` O g every M in O satisfies ∆ `M g

η ` O g every M in O satisfies η `M g

θ O = O′ applying θ to every M in O results in O′

Definition 5.2.43 (Measure Functions) For each family constant a:K in Σ, the

user must specify a deterministic function measurea M = O which is total whenever

·; K `M : type. Moreover, the function must satisfy the following properties.

1. if M ∈ O, then M ∈ inputsa(M)

2. measurea is parametric in M

For example, measureack (M0 :: M1 :: M2 :: ·) = lex〈M0;M1〉, for every M0,M1 and

M2.

We compare the size of termination measures O1 and O2, using the judgments

〈∆1;O1〉 <o 〈∆2;O2〉, 〈∆1;O1〉 ≤o 〈∆2;O2〉 and 〈∆1;O1〉 =o 〈∆2;O2〉, where Oi is

assumed to be well-typed in ∆i; the rules for 〈∆1;M〉 <o 〈∆2;N〉 and 〈M ; ∆1〉 =o

〈N ; ∆2〉 are defined in terms of the semantic mapping.
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[[M ]] ∆1 <s [[M ]] ∆2

〈M ; ∆1〉<o〈N ; ∆2〉

[[M ]] ∆1 = [[M ]] ∆2

〈M ; ∆1〉=o〈N ; ∆2〉

〈O1; ∆〉<o〈O′1; ∆′〉

〈lex〈O1;O2〉; ∆〉<o〈lex〈O′1;O′2〉; ∆′〉

〈O1; ∆〉=o〈O′1; ∆′〉 〈O2; ∆〉<o〈O′2; ∆′〉

〈lex〈O1;O2〉; ∆〉<o〈lex〈O′1;O′2〉; ∆′〉

〈O1; ∆〉=o〈O′1; ∆′〉 〈O2; ∆〉=o〈O′2; ∆′〉

〈lex〈O1;O2〉; ∆〉=o〈lex〈O′1;O′2〉; ∆′〉

〈O1; ∆〉=o〈O′1; ∆′〉 〈O2; ∆〉=o〈O′2; ∆′〉

〈lex〈O1;O2〉; ∆〉≤o〈lex〈O′1;O′2〉; ∆′〉

〈O1; ∆〉<o〈O′1; ∆′〉 〈O2; ∆〉≤o〈O′2; ∆′〉

〈simul〈O1;O2〉; ∆〉<o〈simul〈O′1;O′2〉; ∆′〉

〈O1; ∆〉≤o〈O′1; ∆′〉 〈O2; ∆〉<o〈O′2; ∆′〉

〈simul〈O1;O2〉; ∆〉<o〈simul〈O′1;O′2〉; ∆′〉

〈O; ∆〉<o〈O′; ∆′〉

〈O; ∆〉≤o〈O′; ∆′〉

〈O; ∆〉=o〈O′; ∆′〉

〈O; ∆〉≤o〈O′; ∆′〉

The following lemma lifts some of the useful properties of LF terms to measures.

Lemma 5.2.44 (Properties of Termination Measures)

1. If Γ ` aM : type then Γ ` (measurea M) wellTyped

2. If ∆ ` inputsa(M) g then ∆ ` measurea M g

3. If η ` inputsa(M) g then η ` measurea M g

4. If θ(aM) = aN and measurea M = O then θO = O′ and measurea N = O′

Proof: Direct, by the definition of measurea. �

The following lemma lifts some of the useful properties of semantic domains to

termination measures.

Lemma 5.2.45 (Orderings on Measures)

1. <o is a transitive, well-founded ordering
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2. =o is a transitive, symmetric and if |∆| ` O wellTyped and ∆ ` O g then

〈∆;O〉 =o 〈∆;O〉

3. If 〈∆;O〉 =o 〈∆;O〉 and ∆ can be obtained from ∆′ by deleting some number

of declarations then 〈∆;O〉 =o 〈∆′;O〉

4. If 〈O1; ∆1〉 =o 〈O′1; ∆′1〉 and 〈O2; ∆2〉 =o 〈O′2; ∆′2〉 and 〈O1; ∆1〉 <o 〈O2; ∆2〉

then 〈O′1; ∆′1〉 <o 〈O′2; ∆′2〉

5. If |∆| ` O wellTyped and ∆ ` O g and ∆′ ` θ : ∆ and θO = O′ then 〈∆;O〉

=o 〈∆′;O′〉

6. If 〈∆;O〉 <o 〈∆′;O′〉 or 〈∆;O〉 =o 〈∆′;O′〉 or 〈∆;O〉 ≤o 〈∆′;O′〉 then 〈∆;O〉

=o 〈∆;O〉 and 〈∆;O〉 =o 〈∆;O〉

Proof: Each property is proved by a straightforward induction, using the properties

of semantic domains. Note that we treat the well-foundedness of the lexicographic

and simultaneous composition of well-founded orderings as being a priori justified

(as we have seen in Chapter 3, this corresponds the multiplication of ordinals, and

to a weak form of the natural sum of ordinals, respectively). �

Termination measures will be useful in defining a notion of well-founded ordering

on queries, but they are not enough. For example, we can safely assume that queries

whose goals are of the form mult (sM0)M1M2 are bigger than queries whose goals of

the form addN0N1N2 because add never has subgoals of the form mult. In general,

a goal of the form aM should be bigger than a goal of the form bN whenever b @ a.

If a and b are mutually recursive (i.e. if a ≡ b), then aM should be bigger than bN

whenever 〈measurea M ; ∆〉 <o 〈measureb N ; ∆′〉. If a and b are mutually recursive

but distinct, and 〈measurea M ; ∆〉 =o 〈measureb N ; ∆′〉, then we can arbitrarily
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assume that aM is bigger than bN , provided we make such assumptions consistently;

we keep track of this by assigning a tie-breaking natural number tba to each a in Σ.

Termination Vectors V ::= 〈a; 〈O; ∆〉;m〉

Termination vectors are computed from goals using the (deterministic) function

size∆(A). As usual, we view the defining equations of size∆(A) as shorthand

for a judgmental whose totality is witnessed by an inductive proof, in this case on

the structure of A.

size∆(aM) = 〈a; 〈measurea M ; ∆〉; tba〉

size∆(Πx:A.B) = V if size∆,∀x:A(B) = V

Termination vectors are strictly ordered (lexicographically) by the relation <v

and compared for equality using the relation =v, each of which is defined by the

rules below.

a @ b

〈a; 〈O; ∆〉;m〉 <v 〈b; 〈O′; ∆′〉;m′〉

a ≡ b 〈O; ∆〉<o〈O′; ∆′〉

〈a; 〈O; ∆〉;m〉 <v 〈b; 〈O′; ∆′〉;m′〉

a ≡ b 〈O; ∆〉=o〈O′; ∆′〉 m < m′

〈a; 〈O; ∆〉;m〉 <v 〈b; 〈O′; ∆′〉;m′〉

a ≡ b 〈M ; ∆〉=o〈M ′; ∆′〉 m = m′

〈a; 〈O; ∆〉;m〉 =v 〈b; 〈O′; ∆′〉;m′〉

Termination vectors have the following properties.

Lemma 5.2.46 (Termination Vectors)

1. <v is a transitive, well-founded ordering

2. =v is transitive and symmetric

3. If V1 =v V
′

1 and V2 = V ′2 and V1 <v V2 then V ′1 <v V
′

2

Proof: Direct. We treat the well-foundedness of < on natural numbers and the

well-foundedness of the lexicographic composition of well-founded orderings as being

a priori justified (the latter corresponds to ordinal multiplication). �
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Termination vectors give us a well-founded ordering on queries whose input ar-

guments are ground, which will play an important role in proving that the ex-

ecution of a mode/termination checked logic program terminates. However, the

mode/termination checker reasons about logic programs statically, and thus must be

able to reach conclusions of the form “although O1 and O2 may not be ground, given

any θ such that θO1 and θO2 are both ground, it must be the case that θO1 is smaller

than θO2.” To this end, we define a notion of ordering formulas. Although we reuse

the letters F and G in defining ordering formulas, they are not to be confused with

the formulas from the assertion logics from Chapter 2 and Chapter 4.

Ordering Formulas F,G ::= > | O1 ≺ O2 | O1 � O2 | O1 ≈ O2 | ∇x:A.F | F ∧G

Ordering Contexts Φ ::= · | Φ, F

We use a sequent calculus provability judgment of the form ∆; Φ ` F to mean that

the formula F is a logical consequence of the formulas in Φ, and we expect sequents

such as ∃x:nat; · ` x ≺ s x to be provable. This is because, for any ground M of type

nat, the inequality 〈·;M〉 <o 〈·; sM〉 should hold, and we expect the sequent calculus

to treat existentially-quantified variables as place-holders for arbitrary ground terms.

However, if it happens to be the case that occurrences of ≺, � and ≈ in F are

compatible with the orderings <o, ≤o and =o then we say that F is valid, which

we define (and generalize to ordering contexts) below.

∆ ` > valid

〈O1; ∆〉<o〈O2; ∆〉

∆ ` O1 ≺ O2 valid

〈O1; ∆〉≤o〈O2; ∆〉

∆ ` O1 � O2 valid

〈O1; ∆〉=o〈O2; ∆〉

∆ ` O1 ≈ O2 valid

∆,∀x:A ` F valid

∆ ` ∇x:A.F
∆ ` F valid ∆ ` G valid

∆ ` F ∧G valid

∆ ` · valid
∆ ` F valid ∆ ` Φ valid

∆ ` Φ, F valid

Because the definition of valid depends on the choice of semantic domain, and
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because we expect ground formulas to be valid whenever they are provable, the

sequent calculus must be sound with respect to the semantic domain; we make this

precise in Definition 5.2.47. As with the semantic domain, we leave the exact for-

mulation of the rules for the sequent calculus abstract, although an example of one

which is compatible with the semantic domain of Example 5.2.42 can be found in

[Pie05]; we leave the formal specification and implementation of a sequent calculus

which is compatible with the semantic domain of Example 5.2.41 to future work,

although a prototype of an implementation of the Twelf termination checker based

on one candidate is available from http://www.twelf.org/lpo/.

We lift the notion of wellTyped, g and generalized substitution application to

ordering formulas and ordering contexts, the rules of which are straightforward, but

made precise below.

Γ ` > wellTyped

Γ ` O1 wellTyped Γ ` O2 wellTyped

Γ ` (O1 ≺ O2) wellTyped

Γ ` O1 wellTyped Γ ` O2 wellTyped

Γ ` (O1 � O2) wellTyped

Γ ` O1 wellTyped Γ ` O2 wellTyped

Γ ` (O1 ≈ O2) wellTyped

Γ, x:A ` F wellTyped

Γ ` (∇x:A.F ) wellTyped

Γ ` F wellTyped Γ ` G wellTyped

Γ ` F ∧G wellTyped

Γ ` (·) wellTyped

Γ ` Φ wellTyped Γ ` F wellTyped

Γ ` (Φ, F ) wellTyped

∆ ` > g

∆ ` O1 g ∆ ` O2 g

∆ ` (O1 ≺ O2) g

∆ ` O1 g ∆ ` O2 g

∆ ` (O1 � O2) g

∆ ` O1 g ∆ ` O2 g

∆ ` (O1 ≈ O2) g

∆,∀x:A ` F g

∆ ` (∇x:A.F ) g

∆ ` F g ∆ ` G g

∆ ` F ∧G g

∆ ` (·) g

∆ ` Φ g ∆ ` F g

∆ ` (Φ, F ) g
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η ` > g

η ` O1 g η ` O2 g

η ` (O1 ≺ O2) g

η ` O1 g η ` O2 g

η ` (O1 � O2) g

η ` O1 g η ` O2 g

η ` (O1 ≈ O2) g

η,∀x:A ` F g

η ` (∇x:A.F ) g

η ` F g η ` G g

η ` F ∧G g

η ` (·) g

η ` Φ g η ` F g

η ` (Φ, F ) g

θ> = >

θ (O1 ≺ O2) = O′1 ≺ O′2 if θ O1 = O′1 and θO2 = O′2

θ (O1 � O2) = O′1 � O′2 if θ O1 = O′1 and θO2 = O′2

θ (O1 ≈ O2) = O′1 ≈ O′2 if θ O1 = O′1 and θO2 = O′2

θ (∇x:A.F ) = ∇y:B.G if θA = B and (θ, y/x)F = G

θ(F ∧G) = F ′ ∧G′ if θF = F ′ and θG = G′

θ (·) = ·

θ (Φ, F ) = Φ′, G if θΦ = Φ′ and θF = G

Definition 5.2.47 (Soundness of Denotations and Proofs) Given the notion

of valid induced by a given semantic domain, we say that the judgment ∆; Φ ` F is

sound iff the following propositions hold.

1. If ∆; Φ ` F and ∆ can be obtained from ∆′ by deleting some number of decla-

rations then ∆′; Φ ` F

2. If ∆; Φ ` F and ∆ ` Φ wellTyped and ∆ ` F wellTyped and ∆′ ` θ : ∆ and

θF = F ′ and θΦ = Φ′ then ∆′; Φ′ ` F ′

3. If ∆; Φ ` F and ∆ ` Φ wellTyped and ∆ ` Φ g and ∆ ` Φ valid and

∆ ` F wellTyped and ∆ ` F g then ∆ ` F valid

Sometimes it is useful to know that solved goals always satisfy certain invariants.

For example, once the goal addM0M1M2 is solved, we should know that the invariant
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M1 �M2 is valid. In general, for each a:K in Σ, the user must define the parametric

function redInva that maps spines of the appropriate length to formulas (i.e. if K =

Πx1:A1. . . . Πxn:An.type then redInva (M1 :: . . . :: Mn :: ·) is built up from M1 . . .Mn

uniformly without regards to the structure of each Mi). Reduction invariants satisfy

the following properties.

Lemma 5.2.48 (Reduction Invariants)

1. If Γ ` aM : type then Γ ` redInva M wellTyped

2. If θ(aM) = aM ′ and redInva M = F then θF = F ′ and redInva M ′ = F ′

3. If ∆ ` aM g then ∆ ` redInva M g

4. If η ` aM g then η ` redInva M g

Proof: Direct, by the definition of redInva. �

The following lemmas lift some of the useful properties of LF terms and spines

to measures, ordering formulas and contexts.

Lemma 5.2.49 (Gen. Substitutions on Measures, Formulas, Contexts)

1. (a) If θO = O′ and θO = O′′ then O′ = O′′

(b) If θF = F ′ and θF = F ′′ then F ′ = F ′′

(c) If θΦ = Φ′ and θΦ = Φ′′ then Φ′ = Φ′′

2. If ∆′ ` θ : ∆ then:

(a) If |∆| ` O wellTyped then θO = O′ and |∆′| ` O′ wellTyped

(b) If |∆| ` F wellTyped then θF = F ′ and |∆′| ` F ′ wellTyped

(c) If |∆| ` Φ wellTyped then θΦ = Φ′ and |∆′| ` Φ′ wellTyped
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Proof: Each case in 1 is by straightforward induction on the derivation of ei-

ther generalized substitution application. 1(c) uses 1(b), 1(b) uses 1(a), 1(a) uses

Lemma 5.2.2. Each case in 2 is by straightforward induction on the given typing

derivation; 2(c) uses 2(b), 2(b) uses 2(a) and 2(a) uses Lemma 5.2.7. �

Lemma 5.2.50 (Weakening for Measures, Formulas, Contexts)

If Γ ` A : type and x#A then:

1. if Γ,Γ′ ` O wellTyped then Γ, x:A,Γ′ ` O wellTyped

2. if Γ,Γ′ ` F wellTyped then Γ, x:A,Γ′ ` F wellTyped

3. if Γ,Γ′ ` Φ wellTyped then Γ, x:A,Γ′ ` Φ wellTyped

Proof: By induction on the structure of the given typing derivation; 3 uses 2, 2 uses

1, and 1 uses Lemma 5.1.6. �

Lemma 5.2.51 (Weakening for Ground On Measures, Formulas, Contexts)

1. If ∆ can be obtained from ∆′ by deleting some number of declarations then:

(a) If ∆ ` O g then ∆′ ` O g

(b) If ∆ ` F g then ∆′ ` F g

(c) If ∆ ` Φ g then ∆′ ` Φ g

2. If η can be obtained from η′ by deleting some number of declarations then:

(a) If η ` O g then η′ ` O g

(b) If η ` F g then η′ ` F g

(c) If η ` Φ g then η′ ` Φ g
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Proof: By straightforward induction on the structure of the given groundness deriva-

tions. Each (c) case uses the corresponding (b) case, each (b) case uses the corre-

sponding (a) case, and each (a) case uses Lemma 5.2.18. �

Lemma 5.2.52 (Preservation of Ground on Measures, Formulas, Contexts)

1. If ∆′ ` θ : ∆ then:

(a) If ∆ ` O g and θO = O′ then ∆′ ` O′ g

(b) If ∆ ` F g and θF = F ′ then ∆′ ` F ′ g

(c) If ∆ ` Φ g and θΦ = Φ′ then ∆′ ` Φ′ g

2. If ∆ ` θ : η then:

(a) η ` O g and θO = O′ then ∆ ` O′ g

(b) η ` F g and θF = F ′ then ∆ ` F ′ g

(c) η ` Φ g and θΦ = Φ′ then ∆ ` Φ′ g

3. If η′ ` θ : η then:

(a) η ` O g and θO = O′ then η′ ` O′ g

(b) η ` F g and θF = F ′ then η′ ` F ′ g

(c) η ` Φ g and θΦ = Φ′ then η′ ` Φ′ g

Proof: Each case is by a straightforward induction on the given derivation of ground-

ness. Each (c) case uses the corresponding (b) case, each (b) case uses the corre-

sponding (a) case, and each (a) case uses Lemma 5.2.20. �

Lemma 5.2.53 (Substitution for Validity) If ∆′ ` θ : ∆ then:
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1. if |∆| ` F wellTyped and ∆ ` F g and ∆ ` F valid and θF = F ′ then

∆′ ` F ′ valid

2. if |∆| ` Φ wellTyped and ∆ ` Φ g and ∆ ` Φ valid and θΦ = Φ′ then

∆′ ` Φ′ valid

Proof: By straightforward induction on the derivation of valid; 1 uses Lemma 5.2.45

and 2 uses 1. �

Lemma 5.2.54 (Weakening for Validity) If ∆ can be obtained from ∆′ by delet-

ing some number of declarations, then:

1. if ∆ ` F valid then ∆′ ` F valid

2. if ∆ ` Φ valid then ∆′ ` Φ valid

Proof: By straightforward induction on the structure of valid; 1 uses Lemma 5.2.45

and 2 uses 1. �

5.2.5 The Mode and Termination Checker

We are now ready to define the mode/termination checker. We will find it useful to

make lists of LF types; we abuse notation slightly by overloading the notation used

for spines.

Type Lists A,B ::= · | A :: A

We say that Γ ` A wellTyped if every A in A is well typed.

Γ ` · wellTyped

Γ ` A : type Γ ` A wellTyped

Γ ` A :: A wellTyped

We lift generalized substitution application analogously. The following lemma lifts

some of the useful properties of LF types to type lists.
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Lemma 5.2.55 (Type Lists)

1. If Γ,Γ′ ` A wellTyped and Γ ` B : type then Γ, x:A,Γ′ ` A wellTyped

2. If θA = A′ and θA = A′′ then A′ = A′′

3. If x#A and (θ, y/x)A = A′ or (θ,M :B/x)A = A′ then θA = A′

4. If ∆′ ` θ : ∆ and |∆| ` A wellTyped then θA = A′ and |∆′| ` A wellTyped

Below we define the mode/termination checker for Twelf. We assume that we

are given a semantic domain S and a sequent calculus ∆; Φ ` F which is sound with

respect to S. The mode/termination checker is specified judgmentally below, and is

inspired by the mode and termination checking algorithms sketched in [RP96, Roh96]

and the reduces checking algorithm specified in [Pie05]. In other words, it is essen-

tially a syntactic specification for the combination of the mode, termination and

reduces checkers implemented in Twelf, which has been used to formally verify the

correctness of all the proofs in Chapter 2 (where SS is defined in Example 5.2.42

and ∆; Ψ ` is the sequent calculus specified in [Pie05]) and in Chapter 4 (where

SS is a generalization of the one defined in Example 5.2.41 and the formal spec-

ification of ∆;F ` is left to future work); see http://www.twelf.org/slr and

http://www.twelf.org/lpo for the source files. We do not require that the notion

of provability for ∆; Φ ` F be decidable, but if it is, then so is mode/termination

checking.

The judgment ` Σ′ tc a should be read as saying “a is a mode/termination-

checked logic program in the signature Σ′” (where Σ′ should be thought of as a

subset of the given LF signature Σ). Similarly, ∆ ` ∆′ tc a should be read as “a is a

mode/termination-checked logic program in the context ∆′ (which should be thought

of as a subset of ∆)”; η ` η′ tc a is the lifting of ∆ ` ∆′ tc a to abstract substitutions.
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All these judgments can be interpreted functionally by induction/recursion on the

structure of Σ′, ∆′ and η′, respectively. In general, a logic-program a might call

another logic-program b. If a and b are mutually recursive, then b ≡ a must hold, in

which case the aforementioned judgments will mode/termination-check b explicitly.

If a can call b, but not vice-versa, then b @ a must hold, in which case b will only be

mode/termination-checked when we consider the well-behavedness of the program

clauses of a that call b.

` · tc a
` Σ′ tc a

` Σ′, b:K tc a

hd(A) 6≡ a ` Σ′ tc a

` Σ′, c:A tc a

hd(A) ≡ a ` Σ′ tc a · ` A okD ·

` Σ′, c:A tc a

∆ ` · tc a
∆ ` ∆′ tc a

∆ ` ∆′, ∃x:A tc a

hd(A) 6≡ a ∆ ` ∆′ tc a

∆ ` ∆′, ∀x:A tc a

hd(A) ≡ a ∆ ` ∆′ tc a ∆ ` A okD ·

∆ ` ∆′,∀x:A tc a

η ` · tc a

η ` η′ tc a

η ` η′,∃?x:A tc a

η ` η′ tc a

η ` η′, ∃gx:A tc a

hd(A) 6≡ a η ` η′ tc a

η ` η′, ∀x:A tc a

hd(A) ≡ a η ` η′ tc a η ` A okD ·

η ` η′, ∀x:A tc a

The judgment ∆ ` A okG can be thought of as saying “performing search on

the mode-compatible query ∆ ` ? : A is guaranteed to terminate.” Similarly, the

judgment η ` A okG can be thought of as saying that, for every θ approximated by

η, querying the goal formula θA will terminate. Both judgments can be interpreted

functionally by induction/recursion on A.
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|∆| ` A : type ∆,∀x:A ` B okG

∆ ` Πx:A.B okG

|∆| ` aM : type ` Σ tc a ∆ ` ∆ tc a ∆ ` inputsa(M) g

∆ ` aM okG

|η| ` A : type η,∀x:A ` B okG

η ` Πx:A.B okG

|η| ` aM : type ` Σ tc a η ` η tc a η ` inputsa(M) g

η ` aM okG

The judgment ∆ ` A okD A can be thought of as saying that the program

declaration A, when used to solve any goal whose head matches A, will terminate, as

will solving the left-over subgoals A. This judgment is lifted to abstract substitutions

in the usual way (i.e. by replacing ∆ with η). Both judgments can be interpreted

functionally by induction/recursion on A.

|∆| ` A : type ∆, ∃x:A ` B okD A x ∈ FV (B)

∆ ` Πx:A.B okD A

∆ ` B okD A :: A

∆ ` A→ B okD A

∆ ` inputsa(M) g=⇒ η η ` inputsa(M) g η; · ` A okSGs aM

∆ ` aM okD A

|η| ` A : type η,∃?x:A ` B okD A x ∈ FV (B)

η ` Πx:A.B okD A

η ` B okD A :: A

η ` A→ B okD A

η ` inputsa(M) g=⇒ η′ η′ ` inputsa(M) g η′; · ` A okSGs aM

η ` aM okD A

The judgment ∆; Φ ` A okSGs aM means that, if the reduction invariants Φ are

valid in ∆, then solving all of the subgoals of aM in A one-at-a-time, in order, will

terminate. This is also lifted to generalized substitutions in the usual way. These
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judgments can be interpreted functionally by induction/recursion on A.

|∆| ` aM : type ∆ ` outputsa(M) g ∆; Φ ` redInva M

η; Φ ` · okSGs aM

|∆| ` A : type ∆; Φ ` A okSG aM =⇒ 〈η;F 〉 η; Φ, F ` A okSGs aM

∆; Φ ` A :: A okSGs aM

|η| ` aM : type η ` outputsa(M) g ∆η; Φ ` redInva M

η; Φ ` · okSGs aM

|∆| ` A : type η; Φ ` A okSG aM =⇒ 〈η′;F 〉 η′; Φ, F ` A okSGs aM

η; Φ ` A :: A okSGs aM

The judgment ∆; Φ ` A okSG aM =⇒ 〈Φ;F 〉 means that, if Φ is assumed to

be valid in ∆, then A can be shown to be an “ok” goal which is smaller than aM ,

and moreover, when A has been successfully solved, the output-substitution will be

approximated by η, and the invariant F will be valid in the output-context. This

judgment is lifted to η in usual way. Both judgments can be interpreted functionally
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by induction/recursion on A.

hd(A) ≡ a |∆| ` A : type ∆,∀x:A ` A okD ·

∆,∀x:A; Φ ` B okSG aM =⇒ 〈η,∀x:A;F 〉

∆; Φ ` Πx:A.B okSG aM =⇒ 〈η;∇x:A.F 〉

hd(A) 6≡ a |∆| ` A : type ∆,∀x:A; Φ ` B okSG aM =⇒ 〈η,∀x:A;F 〉

∆; Φ ` Πx:A.B okSG aM =⇒ 〈η;∇x:A.F 〉

b ≡ a tbb ≥ tba ∆ ` inputsb(N) g

∆; Φ ` measureb N ≺ measurea M ∆ ` outputsb(N) g=⇒ η

∆; Φ ` bN okSG aM =⇒ 〈η; redInvb N〉

b ≡ a tbb < tba ∆ ` inputsb(N) g

∆; Φ ` measureb N � measurea M ∆ ` outputsb(N) g=⇒ η

∆; Φ ` bN okSG aM =⇒ 〈η; redInvb N〉

b @ a ∆ ` inputsb(N) g ` Σ tc b ∆ ` ∆ tc b ∆ ` outputsb(N) g=⇒ η

∆; Φ ` bN okSG aM =⇒ 〈η; redInvb N〉

155



hd(A) ≡ a |η| ` A : type η,∀x:A ` A okD ·

η,∀x:A; Φ ` B okSG aM =⇒ 〈η′,∀x:A;F 〉

η; Φ ` Πx:A.B okSG aM =⇒ 〈η′;∇x:A.F 〉

hd(A) 6≡ a |η| ` A : type η,∀x:A; Φ ` B okSG aM =⇒ 〈η′,∀x:A;F 〉

η; Φ ` Πx:A.B okSG aM =⇒ 〈η′;∇x:A.F 〉

b ≡ a tbb ≥ tba η ` inputsb(N) g ∆η; Φ ` measureb N ≺ measurea M

η ` outputsb(M) g=⇒ η′ η′ ` redInvb N g

η; Φ ` bN okSG aM =⇒ 〈η′; redInvb N〉

b ≡ a tbb < tba η ` inputsb(N) g ∆η; Φ ` measureb N � measurea M

η ` outputsb(M) g=⇒ η′ η′ ` redInvb N g

η; Φ ` bN okSG aM =⇒ 〈η′; redInvb N〉

b @ a η ` inputsb(N) g ` Σ tc b η ` η tc b

η ` outputsb(M) g=⇒ η′ η′ ` redInvb N g

η; Φ ` bN okSG aM =⇒ 〈η′; redInvb N〉

Finally, we use the judgment ∆ ` A solved to say that the output of solving a

query was successful.

∆,∀x:A ` B solved

∆ ` Πx:A.B solved

|∆| ` aM : type ∆ `M g ∆ ` redInva M valid

∆ ` aM solved

Lemma 5.2.56 (OK Goals are Well Typed) If ∆ ` A okG then |∆| ` A : type

Proof: By a straightforward induction over the given derivation. �

Lemma 5.2.57 (Substitutions Preserve Well-Modedness)

1. If D : (∆0 ` a tc ∆0,∆1) and ∆′0 ` θ0 : ∆0 and ∆′0,∆
′
1 ` θ0, θ1 : ∆0,∆1 then

∆′0 ` a tc ∆′0,∆
′
1
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2. If D : (∆ ` A okD B) and ∆′ ` θ : ∆ and θA = A′ and θB = B′ then

∆′ ` A′ okD B′

3. If D : (η; Φ ` A okSGs aM) and η′ ` θ : η and |η| ` Φ wellTyped and θΦ = Φ′

and θA = A′ and θ(aM) = aM ′ then η′; Φ′ ` A′ okSGs aM ′

4. If D : (η0; Φ ` A okSG aM =⇒ 〈η1;F 〉) and η′0 ` θ : η0 and |η0| ` Φ wellTyped

and θΦ = Φ′ and θA = A′ and θ(aM) = aM ′ and θP = P ′ then there exists

η′1 s.t. η′0; Φ′ ` A′ okSG aM ′ =⇒ 〈η′1;P ′〉 and η′1 ` θ : η1

5. If D : (η ` A okD B) and η′ ` θ : η and θA = A′ and θB = B′ then

η′ ` A′ okD B′

6. If D : (η0 ` a tc η0, η1) and η′0, η
′
1 ` θ0, θ1 : η0, η1 and η′0 ` θ0 : η0 then

η′0 ` a tc η′0, η
′
1

7. If D : (η0; Φ ` A okSG aM =⇒ 〈η1;F 〉) and ∆ ` θ : η0 and |η0| ` Φ wellTyped

and θΦ = Φ′ and θA = A′ and θ(aM) = aM ′ and θF = F ′ then there exists

η′1 s.t. ∆; Φ′ ` A′ okSG aM ′ =⇒ 〈η′1;P ′〉 and η′1 ` θ : η1

8. If D : (η; Φ ` A okSGs aM) and ∆ ` θ : η and |η| ` Φ wellTyped and θΦ = Φ′

and θA = A′ and θ(aM) = aM ′ then ∆; Φ′ ` A′ okSGs aM ′

9. If D : (η0 ` a tc η0, η1) and ∆0,∆1 ` θ0, θ1 : η0, η1 and ∆0 ` θ0 : η0 then

∆0 ` a tc ∆0,∆1

Proof: By mutual induction on D; most of the work is done by Lemma 5.2.38,

Lemma 5.2.20 and Definition 5.2.47. �

Lemma 5.2.58 (Weakening for Mode Checking)

1. If ∆ ` ∆′ tc a and |∆| ` B : type then:
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(a) ∆,∃x:B ` ∆′ tc a

(b) if hd(B) ≡ a then ∆, ∀x:B ` ∆′ tc a

2. If ∆0,∆1 ` A okD A and |∆0| ` B : type then:

(a) ∆0,∃x:B,∆1 ` A okD A

(b) if hd(B) ≡ hd(A) then ∆0,∀x:B,∆1 ` A okD A

3. If η0, η1; Φ ` A okSGs aM and |η0| ` B : type then:

(a) η0,∃?x:B, η1; Φ ` A okSGs aM

(b) if hd(B) ≡ hd(A) then η0,∀x:B, η1; Φ ` A okSGs aM

4. If η0, η1; Φ ` A okSG aM =⇒ 〈η′;F 〉 and |η0| ` B : type then:

(a) η′ = η′0, η
′
1 and η0,∃?x:B, η1; Φ ` A okSG aN =⇒ 〈η′0,∀x:B, η′1;F 〉

(b) if hd(B) ≡ hd(A) then η′ = η′0, η
′
1 and η0,∀x:B, η1; Φ ` A okSG aN =⇒

〈η′0,∀x:B, η′1;F 〉

5. If η0, η1 ` A okD A and |η0| ` B : type then:

(a) η0,∃?x:B, η1 ` A okD A

(b) if hd(B) ≡ hd(A) then η0,∀x:B, η1 ` A okD A

6. If η0, η1 ` η′ tc a and |η0| ` B : type then:

(a) η0,∃?x:B, η1 ` η′ tc a

(b) if hd(B) ≡ a then η0, ∀x:B, η1 ` η′ tc a

Proof: By simultaneous induction, using most of the weakening lemmas proven thus

far and the definition of a sound sequent calculus. �
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Lemma 5.2.59 (Termination Checking Mutually Recursive Types)

If a ≡ b then:

1. if ` Σ tc a then ` Σ tc b

2. if ∆ ` ∆′ tc a then ∆ ` ∆′ tc a

3. if η ` η′ tc a then η ` η′ tc a

Proof: Each case is by straightforward induction on the given derivation. �

We are almost ready to begin the proof of the soundness of the termination/mode

checker. The statement of the theorem will along the lines of “for all termina-

tion checked queries ∆ ` ? : A, either there exists θ,∆′,M and A′ such that

fillTerm(∆ ` ? : A)
θ

=⇒ 〈∆′; M ; A′〉 or no such θ,∆′,M and A′ exist.” Al-

though this statement is nontrivial when interpreted intuitionistically (as has been

our convention throughout this dissertation), interpreted classically it is a direct con-

sequence of the law of excluded middle. However, we find it advantageous for the

theorem to be phrased in such a way that it is nontrivial when viewed either way.

To this end, we define the judgment failTerm (along with the helper-judgments

failHeads and failSpine) that characterize when a query is known to fail.
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failHeadsΣ;∆〈∆ ` ? : aM〉

failTerm(∆ ` ? : aM)

failTerm(∆, ∀x:A ` ? : B)

failTerm(∆ ` ? : Πx:A.B)

failHeadsΣ′;∆′〈∆ ` ? : aM〉

failHeadsΣ′;∆′,∃x:A〈∆ ` ? : aM〉

hd(A) 6= a failHeadsΣ′;∆′〈∆ ` ? : aN〉

failHeadsΣ′;∆′,∀x:A〈∆ ` ? : aN〉

hd(A) = a failSpine(∆;A ` ? : aN) failHeadsΣ′;∆′〈∆ ` ? : aN〉

failHeadsΣ′;∆′,∀x:A〈∆ ` ? : aN〉

hd(A) = a fillSpine(∆;A ` ? : aN) θ=⇒〈∆′′; A′; M ; aN ′〉 θ(aN) = aN ′′

unify(∆′′ ` outputsa(N ′)
•= outputsa(N ′′)) =⇒ fail failHeadsΣ′;∆′〈∆ ` ? : aN〉

failHeadsΣ′;∆′,∀x:A〈∆ ` ? : aN〉

failHeadsΣ′;∆′〈∆ ` ? : aM〉

failHeadsΣ′,a:K;·〈∆ ` ? : aM〉

hd(A) 6= a failHeadsΣ′;·〈∆ ` ? : aN〉

failHeadsΣ′,c:A;·〈∆ ` ? : aN〉

hd(A) = a failSpine(∆;A ` ? : aN) failHeadsΣ′;·〈∆ ` ? : aN〉

failHeadsΣ′,c:A;·〈∆ ` ? : aN〉

hd(A) = a fillSpine(∆;A ` ? : aN) θ=⇒〈∆′′; A′; M ; aN ′〉 θ(aN) = aN ′′

unify(∆′′ ` outputsa(N ′)
•= outputsa(N ′′)) =⇒ fail failHeadsΣ′;·〈∆ ` ? : aN〉

failHeadsΣ′,c:A;·〈∆ ` ? : aN〉

failHeads·;·〈∆ ` ? : aN〉

unify(∆ ` inputsa(M) •= inputsa(N)) =⇒ fail

failSpine(∆; aM ` ? : aN)

x ∈ FV (B) failSpine(∆, ∃x:A;B ` ? : aN)

failSpine(∆; Πx:A.B ` ? : aN)

fillSpine(∆;B ` ? : aN) θ=⇒〈∆′; B; M ; aN ′〉 θA = A′ failSpine(∆′;A′ ` ? : aN ′)

failSpine(∆;A→ B ` ? : aN)

In the following lemma, note that false is the judgment with no inference rules.

Lemma 5.2.60 (Soundness of Failure)

1. If failTerm(∆ ` ? : A) and fillTerm(∆ ` ? : A)
θ

=⇒ 〈∆′; M ; A′〉 then

160



false.

2. If failHeads∆0;Σ0〈∆0,∆1 ` ? : aN〉 and Σ = Σ0,Σ1 and fillHead(∆0; Σ0; aN) =⇒

h:A and fillTerm(∆0,∆1 ` ? : aN)
θ

=⇒ 〈∆′; hM ; aN ′〉 then false.

3. If failSpine(∆;A ` ? : aN) and fillSpine(∆;A ` ? : aN)
θ

=⇒〈∆′; A′; M ; aN ′〉

then false.

Proof: By a straightforward mutual induction on the given derivation of failure. �

A query is terminating if it either succeeds (i.e. fillTerm is inhabited) or can

be shown to exhaustively fail (i.e. failTerm is inhabited); this is formalized in

the judgments below. Because our termination proof will rely on successful queries

satisfying certain invariants, we include these invariants in the definition the judg-

ments. The judgment (∆ ` ? : A) terminatesSatisfying 〈η;F 〉 means that the

query ∆ ` ? : A terminates, and, moreover, if it terminates successfully, then F

is well formed in the output context and η approximates the output substitution.

The judgment (∆;A ` ? : aM) ;A terminates means that the process of solving

the spine-query (∆;A ` ? : aM) along with the left-over subgoals in A termi-

nates. The judgment (∆ ` ? : aN) terminatesUsing 〈∆′; Σ′〉 means that the

query ∆ ` ? : aN terminates when potential heads are restricted to ∆′ and Σ′.
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fillTerm(∆ ` ? : A) θ=⇒ 〈∆′; M ; A′〉 ∆′ ` A′ solved

(∆ ` ? : A) terminates

failTerm(∆ ` ? : A)

(∆ ` ? : A) terminates

failHeads∆′;Σ′〈∆ ` ? : aN〉

(∆ ` ? : aN) terminatesUsing 〈∆′; Σ′〉

fillTerm(∆ ` ? : aN) θ=⇒ 〈∆′′; M ; aN ′〉 ∆′′ ` aN ′ solved

(∆ ` ? : aN) terminatesUsing 〈∆′; Σ′〉

fillTerm(∆ ` ? : A) θ=⇒ 〈∆′; M ; A′〉 ∆′ ` A′ solved ∆′ ` θ : η

∆η = ∆ θF = F ′ |∆′| ` F ′ wellTyped ∆′ ` F ′ g ∆′ ` F ′ valid

(∆ ` ? : A) terminatesSatisfying 〈η;F 〉

failTerm(∆ ` ? : A)

(∆ ` ? : A) terminatesSatisfying 〈η;F 〉

fillSpine(∆;A ` ? : aN) θ=⇒〈∆′; A′; M ; aN ′〉 θA = A′

|∆| ` Φ wellTyped ∆ ` Φ g ∆ ` Φ valid ∆′; Φ ` A′ okSGs aN ′

(∆;A ` ? : aN) ;A terminates

failSpine(∆;A ` ? : aN)

(∆;A ` ? : aN) ;A terminates

We are finally ready to begin our proof of termination. Most of the reasoning will

be by induction on the structure of various derivations, as usual. However, we will

also induct on termination vectors V = size∆(A) under the ordering <v in instances

where the judgment ∆ ` A okG is known to be inhabited. Below, we show that V

will always be well defined in such situations.

Lemma 5.2.61 (Size Metric on Ok Goals)

1. If ∆ ` A okG then there exists a V such that size∆(A) = V and V =v V .

2. If size∆(A) = V and size∆(A) = V ′ then V = V ′
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3. If ∆ ` A okG and size∆(A) = V then V =v V .

Proof: Note the distinction between syntactic equality, =, and the judgmentally

defined notion of equality =v. 1 is by a straightforward induction on the given

derivation, using Lemma 5.2.45. 2 is by straightforward induction on A. 3 is a direct

corollary to 1 and 2. �

We are now ready to prove the soundness of the mode/termination checker. If

this proof were to be realized by a function, the function could be rightly viewed as

an interpretor for logic programs.

Theorem 5.2.62 (Soundness of The Mode/Termination Checker)

1. If D : (∆ ` A okG) and size∆(A) = V and V =v V then (∆ ` ? :

A) terminates

2. If D : (∆0,∆1 ` ∆0 tc a) and E : ( ` Σ0 tc a) and Σ = Σ0,Σ1 and F :

(∆0,∆1 ` aN okG) and V = size∆0,∆1(aN) and V =v V then (∆0,∆1 ` ? :

aN) terminatesUsing 〈∆0; Σ0〉

3. If D : (∆ ` A okD A) and |∆| ` A : type and |∆| ` A wellTyped and E : (∆ `

aN okG) and hd(A) = a and size∆(aN) = V and V =v V then (∆;A ` ? :

aN) ;A terminates

4. If D : (∆; Φ ` A okSG aM =⇒ 〈η;F 〉) and |∆| ` A : type and |∆| ` Φ wellTyped

and ∆ ` Φ g and ∆ ` Φ valid and E : ∆ ` aM okG and size∆(aN) = V

and V =v V then (∆ ` ? : A) terminatesSatisfying 〈η;F 〉

Proof: By mutual induction on a lexicographic ordering built up from three under-

lying orderings: termination vector ordered by <v, a natural number no greater than
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s s s z ordered structurally3, and a simultaneous ordering of two terms or derivations,

each of which is ordered structurally. 1 is ordered by V , followed by s s s z, followed

by the simultaneous ordering of A and A. 2 is ordered by V , followed by s s z, fol-

lowed by the simultaneous ordering of D and E . 3 is ordered by V , followed by s z,

followed by the simultaneous ordering of D and D. 4 is ordered by V , followed by

z followed by the simultaneous ordering of D and D. We show all of the cases for

1 and 3, and some representative cases of 4. 2 is a tedious exercise in case analysis,

but is otherwise mostly straightforward; it uses IH 3, Lemma 5.2.7, Definition 5.2.47,

Proposition 5.2.12, Lemma 5.2.48, Lemma 5.2.20 and Lemma 5.2.53.

1.

Case:

D =

D0

|∆| ` aM : type

D1

` Σ tc a

D2

∆ ` ∆ tc a

D3

∆ ` inputsa(M) g

∆ ` aM okG

size∆(aM) = V and V =v V given

(∆ ` ? : aM) terminatesUsing 〈·; ·〉 by IH 2 on V, s s z, D2 and D1

either failHeads·;·〈∆ ` ? : aM〉

or (fillTerm(∆ ` ? : aM)
θ

=⇒ 〈∆′′; M ; aN ′〉 and ∆′′ ` aM ′ solved)

by inversion on terminatesUsing

assume failHeads·;·〈∆ ` ? : aM〉 Case 1

(∆ ` ? : aM) terminates by rule

assume fillTerm(∆ ` ? : aM)
θ

=⇒ 〈∆′′; M ; aN ′〉 and ∆′′ ` aM ′ solved

Case 2

(∆ ` ? : aM) terminates by rule

3This is equivalent to using the finite ordinal 4.
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Case:

D =

D0

|∆| ` A : type

D1

∆, ∀x:A ` B okG

∆ ` Πx:A.B okG

size∆(Πx:A.B) = V and V =v V given

V = size∆,∀x:a(B) by inversion on size

size∆,∀x:A(B) <v size∆(Πx:A.B) by rule

(∆, ∀x:A ` ? : B) terminates by IH 1 on V, s s s z, B and B

either failTerm(∆,∀x:A ` ? : B)

or (fillTerm(∆,∀x:A ` ? : B)
θ

=⇒ 〈∆′; M ; B′〉 and ∆ ` ∆′ solvedB’)

by inversion on terminates

assume failTerm(∆, ∀x:A ` ? : B) Case 1

failTerm(∆ ` ? : Πx:A.B) by rule

(∆ ` ? : Πx:A.B) terminates by rule

assume fillTerm(∆,∀x:A ` ? : B)
θ

=⇒ 〈∆′; M ; B′〉

and ∆′ ` B′ solved Case 2

|∆|, x:A ` B : type by Lemma 5.2.56

∆′ ` θ : ∆, ∀x:A and ` ∆′ raised

and θB = B′ and |∆′| `M : B′ by Lemma 5.2.14

θ = θ′, y/x and ∆′ = ∆′′,∀y:A′,∃Γ

and ∆′′ ` θ′ : ∆ and θ′A = A′ by Lemma 5.2.1

∆′ = ∆′′, ∀y:A′ by inversion on raised

fillTerm(∆ ` ? : Πx:A.B)
θ′

=⇒ 〈∆′′; λy:A′.M ; Πy:A′.B′〉 by rule

∆′′ ` Πy:A′.B′ solved by rule

(∆ ` ? : Πx:A.B) terminates by rule
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3.

Case:

D =

D0

∆ ` B okD A :: A

∆ ` A→ B okD A

|∆| ` A→ B : type and |∆| ` A wellTyped and ∆ ` aN okG

and hd(A→ B) = a and size∆(aN) = V and V =v V given

|∆| ` A : type

and |∆|, x:A ` B : type where x#B by inversion for typing

|∆| ` B : type by Lemma 5.1.7

|∆| ` A :: A wellTyped by rule

hd(A→ B) = hd(B) by inversion on hd

(∆;B ` ? : aN) ; (A :: A) terminates by IH 2 on V , s s z, D0 and D0

either failSpine(∆;B ` ? : aN)A :: A

or (fillSpine(∆;B ` ? : aN)
θ

=⇒〈∆′; B′; M ; aN ′〉

and θ(A :: A) = A′ :: A′ and |∆′| ` Φ wellTyped and ∆′ ` Φ g

and ∆′ ` Φ valid and ∆′; Φ ` A′ :: A′ okSGs aN ′)

by inversion on terminates

assume failSpine(∆;B ` ? : aN) Case 1

failSpine(∆;A→ B ` ? : aN) by rule

(∆;A→ B ` ? : aN) ;A terminates by rule

assume fillSpine(∆;B ` ? : aN)
θ

=⇒〈∆′; B′; M ; aN ′〉

and θ(A :: A) = A′′ :: A′ and |∆′| ` Φ wellTyped and ∆′ ` Φ g

and ∆′ ` Φ valid and ∆′; Φ ` A′ :: A′ okSGs aN ′ Case 2

|∆| ` aN : type and ` Σ tc a
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and ∆ ` ∆ tc a and ∆ ` inputsa(N) g by inversion on okG

∆′ ` θ : ∆ and ` ∆′ raised

and θB = B′ and θ(inputsa(N)) = inputsa(N
′)

and |∆|; B′ `M : aN ′ by Lemma 5.2.14

θA = A′ and θA = A′ by inversion on gsub app

|∆′| ` A′ : type and ∆′; Φ ` A′ okSG aN ′ =⇒ 〈η;F 〉

and C : η; Φ, F ` A′ okSGs aN ′ by inversion on okSGs

|∆′| ` aN ′ : type by Corollary 5.1.13

∆′ ` ∆′ tc a by Lemma 5.2.57

∆′ ` (inputsa(N
′)) g by Lemma 5.2.52

∆′ ` aN ′ okG by rule

size∆′(aN ′) = V ′ and V ′ =v V
′ by Lemma 5.2.61

〈∆; inputsa(N)〉 =o 〈∆′; inputsa(N ′)〉 by Lemma 5.2.45

V =v V
′ by def of size and =v

(∆′ ` ? : A′) terminatesSatisfying 〈η;F 〉 by IH 4 on V ′, z, C and C

either failTerm(∆′ ` ? : A′)

or (fillTerm(∆′ ` ? : A′)
θ′

=⇒ 〈∆′′; M ′; A′′〉

and ∆′′ ` A′′ solved and ∆′′ ` θ′ : η and ∆η = ∆′

and θ′F = F ′ and |∆′| ` F ′ wellTyped

and ∆′ ` F ′ g and ∆′ ` F ′ valid) by inversion on terminatesSatisfying

assume failTerm(∆′ ` ? : A′) Case 2.1

failSpine(∆;A→ B ` ? : aN) by rule

(∆;A→ B ` ? : aN) ;A terminates by rule

assume fillTerm(∆′ ` ? : A′)
θ′

=⇒ 〈∆′′; M ′; A′′〉

and ∆′′ ` A′′ solved and ∆′′ ` θ′ : η and ∆η = ∆′
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and θ′F = F ′ and |∆′| ` F ′ wellTyped

and ∆′ ` F ′ g and ∆′ ` F ′ valid Case 2.2

∆′′ ` θ′ : ∆′ and ` ∆′′ raised

and θ′A′ = A′′ and |∆′′| `M ′ : A′′ by Lemma 5.2.14

θ(aN ′) = aN ′′ and |∆′′| ` aN ′′ : type by Lemma 5.2.7

|∆′| ` B′ : type by Lemmas 5.2.7 and 5.2.2

θ′B′ = B′′ and |∆′′| ` B′′ : type by Lemma 5.2.7

θM = M ′ and |∆′′|; B′′ `M ′ : aN ′′ by Lemma 5.2.7

θ′ ◦ θ = θ′′ by Lemma 5.2.9

fillSpine(∆;A→ B ` ? : aN)
θ′′

=⇒〈∆′′; A′′ → B′′; M ′ :: M ′; aN ′′〉 by rule

|∆′| ` A′ wellTyped by Lemma 5.2.55 (twice)

θ′A′ = A′′ and |∆′′| ` A′′ wellTyped by Lemma 5.2.55

θ′′A = A′′ by Lemma 5.2.55

θ′Φ = Φ′ and |∆′′| ` Φ′ wellTyped by Lemma 5.2.49

∆′′ ` Φ′ g by Lemma 5.2.52

∆′′ ` Φ′ valid by Lemma 5.2.53

∆′′; Φ′ ` A′′ okSGs aN ′′ by Lemma 5.2.57

(∆;A→ B ` ? : aN) ;A terminates by rule

Case:

D =

D0

|∆| ` A : type

D1

∆,∃x:A ` B okD A x ∈ FV (B)

∆ ` Πx:A.B okD A

|∆| ` Πx:A.B : type and |∆| ` A wellTyped

and ∆ ` aN okG and hd(Πx:A.B) = a

and size∆(aN) = V and V =v V given

|∆| ` A : type and |∆,∃x:A| ` B : type by inversion for typing
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|∆|, x:A ` A wellTyped by Lemma 5.2.55

|∆| ` aN : type and ` Σ tc a

and ∆ ` ∆ tc a and ∆ ` inputsa(N) g by inversion on okG

|∆|, x:A ` aN : type by Lemma 5.1.6

∆,∃x:A ` ∆ tc a by Lemma 5.2.58

∆,∃x:A ` ∆,∃x:A tc a by rule

∆,∃x:A ` inputsa(N) g by Lemma 5.2.51

∆,∃x:A ` aN okG by rule

hd(Πx:A.B) = hd(B) by inversion on hd

〈∆; inputsa(N)〉 =o 〈∆,∃x:A; inputsa(N)〉 by Lemma 5.2.45 (twice)

size∆,∃x:A(aN) = V ′ and V ′ =v V
′ by Lemma 5.2.61

V =v V
′ by def of size and =v

(∆,∃x:A;B ` ? : aN) ;A terminates by IH 3 on V’, s z, D1 and D1

either failSpine(∆,∃x:A;B ` ? : aN)

or (fillSpine(∆,∃x:A;B ` ? : aN)
θ

=⇒〈∆′; B′; M ; aN ′〉

and θA = A′ and |∆′| ` Φ wellTyped and ∆′ ` Φ g

and ∆′ ` Φ valid and ∆′; Φ ` A′ okSGs aN ′)

by inversion on terminates

assume failSpine(∆, ∃x:A;B ` ? : aN) Case 1

failSpine(∆; Πx:A.B ` ? : aN) by rule

(∆; Πx:A.B ` ? : aN) ;A terminates by rule

assume fillSpine(∆,∃x:A;B ` ? : aN)
θ

=⇒〈∆′; B′; M ; aN ′〉

and θA = A′ and |∆′| ` Φ wellTyped and ∆′ ` Φ g

and ∆′ ` Φ valid and ∆′; Φ ` A′ okSGs aN ′) Case 2

∆′ ` θ : ∆, ∃x:A and ` ∆′ raised and θB = B′
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and θ(inputsa(N)) = inputsa(N
′)

and |∆|; B′ `M : aN ′ by Lemma 5.2.14

θ = θ′,M :A′/x and ∆′ ` θ′ : ∆

and θ′A = A′ and |∆′| `M : A′ by Lemma 5.2.1

∆′,∀y:A′ ` θ′, y/x : ∆′,∀x:A by rule

(θ, y/x)B = B′′ and |∆′|, x:A′ ` B′′ : type by Lemma 5.2.7

fillSpine(∆; Πx:A.B ` ? : aN)
θ′

=⇒〈∆′; Πy:A′.B′′; M :: M ; aN ′〉 by rule

x#A by the renamability of bound variables

θ′A = A′ by Lemma 5.2.55

(∆; Πx:A.B ` ? : aN) ;A terminates by rule

Case:

D =

D0

∆ ` inputsa(M) g=⇒ η

D1

η ` inputsa(M) g

D2

η; · ` A okSGs aM

∆ ` aM okD A

|∆| ` aM : type and |∆| ` A wellTyped and

∆ ` aN okG and size∆(aN = V ) and V =v V given

|∆| ` aM : type and ` Σ tc a

and ∆ ` ∆ tc a and ∆ ` inputsa(N) g by inversion on okG

either unify(∆ ` inputsa(M)
•
= inputsa(N)) =⇒ fail

or unify(∆ ` inputsa(M)
•
= inputsa(N))

∆′
=⇒ θ by Proposition 5.2.12

assume unify(∆ ` inputsa(N)
•
= inputsa(M)) =⇒ fail Case 1

failSpine(∆; aM ` ? : aN) by rule

(∆; aM ` ? : aN) ;A terminates by rule

assume unify(∆ ` inputsa(M)
•
= inputsa(N))

∆′
=⇒ θ Case 2

∆′ ` θ : ∆ and ` ∆′ raised
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and θ unifies inputsa(M) and inputsa(N) by Proposition 5.2.12

θ(aM) = aM ′ and |∆| ` aM ′ : type by Lemma 5.2.7

θM = M ′ by inversion on gsub app

fillSpine(∆; aM ` ? : aN)
θ

=⇒〈∆′; aM ′; (·); aM ′〉 by rule

θA = A′ and |∆′| ` A′ wellTyped by Lemma 5.2.55

θ(aN) = aN ′ and |∆| ` aN ′ : type by Lemma 5.2.7

θN = N ′ by inversion on gsub app

inputsa(M
′) = inputsa(N

′) by def of unifier

∆′ ` inputsa(N ′) g by Lemma 5.2.20

∆′ ` inputsa(M ′) g by equality

∆′ ` θ : η by Lemma 5.2.36

θ· = · by rule

∆; · ` A′ okSGs aM ′

|∆′| ` · wellTyped by rule

∆′ ` · valid by rule

∆′ ` · g by rule

(∆; aM ` ? : aN) ;A terminates by rule

4.

Case:

D =

D0 : (hd(A) ≡ a) D1 : (|∆| ` A : type) D2 : (∆, ∀x:A ` A okD ·)

D3 : (∆,∀x:A; Φ ` B okSG aM =⇒ 〈η,∀x:A;F 〉)

∆; Φ ` Πx:A.B okSG aM =⇒ 〈η;∇x:A.F 〉

|∆| ` Πx:A.B : type and |∆| ` Φ wellTyped

and ∆ ` Φ g and ∆ ` Φ valid
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and ∆ ` aM okG and size∆(aM) = V and V =v V given

|∆| ` A : type and |∆|, x:A ` B : type by inversion for typing

|∆,∀x:A| ` Φ wellTyped by Lemma 5.2.50

∆,∀x:A ` Φ g by Lemma 5.2.51

∆,∀x:A ` Φ g by Lemma 5.2.54

|∆| ` aM : type and ` Σ tc a

and ∆ ` ∆ tc a and ∆ ` inputsa(M) g by inversion on okG

|∆|, x:A ` aM : type by Lemma 5.1.6

∆,∀x:A ` ∆ tc a by Lemma 5.2.58

∆,∀x:A ` ∆,∀x:A tc a by rule

∆,∀x:A ` inputsa(M) g by Lemma 5.2.18

∆,∀x:A ` aM okG by rule

|∆| ` measurea M wellTyped by Lemma 5.2.44

∆ ` measurea M g by Lemma 5.2.44

〈measurea M ; ∆〉 =o 〈measurea M ; ∆〉 by Lemma 5.2.45

〈measurea M ; ∆〉 =o 〈measurea M ; ∆,∀x:A〉 by Lemma 5.2.45

size∆,∀x:A(aM) = V ′ and V ′ =v V
′ by Lemma 5.2.61

V =v V
′ by def of size and def of =v

(∆,∀x:A ` ? : B) terminatesSatisfying 〈η,∀x:A;F 〉

by IH 4 on V ′, z D3 and D3

either failTerm(∆,∀x:A ` ? : B)

or (fillTerm(∆, ∀x:A ` ? : B)
∆′

=⇒ 〈θ; M ; B′〉

and ∆′ ` B′ solved and ∆′ ` θ : η,∀x:A and ∆η = ∆,∀x:A

and θF = F ′ and |∆′| ` F wellTyped and ∆′ ` F g and ∆′ ` F valid)

by inversion on terminatesSatisfying

assume failTerm(∆,∀x:A ` ? : B) Case 1

172



failTerm(∆ ` ? : Πx:A.B) by rule

(∆ ` ? : Πx:A.B) terminatesSatisfying 〈η;F 〉 by rule

assume fillTerm(∆, ∀x:A ` ? : B)
∆′

=⇒ 〈θ; M ; B′〉

and ∆′ ` B′ solved and ∆′ ` θ : η,∀x:A and ∆η = ∆,∀x:A

and θF = F ′ and |∆′| ` F wellTyped

and ∆′ ` F g and ∆′ ` F valid Case 2

∆′ ` θ : ∆,∀x:A and ` ∆′ raised and θB = B′

and θ(inputsa(M) = inputsa(M
′)) and |∆′| `M : B′ by Lemma 5.2.14

∆′ = ∆′′,∀y:A′,∃Γ and θ = θ′, y/x and θA = A′

and ∆′′ ` θ′ : ∆ by Lemma 5.2.1

∆′ = ∆′′,∀y:A′ by inversion on raised

fillTerm(∆ ` ? : Πx:A.B)
θ′

=⇒ 〈∆′′; λy:A′.M ; Πy:A′.B′〉 by rule

∆′′ ` Πy:A′.B′ solved by rule

η = η′,∀x:A and ∆η′ = ∆ by inversion on ∆η

∆′′ ` θ′ : η′ by inversion on abs sub typing

θ′(∇x:A.F ) = ∇y:A′.F ′ by rule

|∆′′| ` ∇y:A′.F ′ wellTyped by rule

∆′′ ` ∇y:A′.F ′ g by rule

∆′′ ` ∇y:A′.F ′ valid by rule

(∆ ` ? : Πx:A.B) terminatesSatisfying 〈η;F 〉 by rule

Case:

D =

b ≡ a tbb ≥ tba ∆ ` inputsb(N) g

∆; Φ ` measureb N ≺ measurea M ∆ ` outputsb(N) g=⇒ η

∆; Φ ` bN okSG aM =⇒ 〈η; redInvb N〉
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|∆| ` bN : type and |∆| ` Φ wellTyped and ∆ ` Φ g

and ∆ ` Φ valid and ∆ ` aM okG

and size∆(aM) = V and V =v V given

|∆| ` aM : type and ` Σ tc a

and ∆ ` ∆ tc a and ∆ ` inputsa(M) g by inversion on okG

` Σ tc b and ∆ ` ∆ tc b by Lemma 5.2.59

∆ ` bN okG by rule

size∆(bN) = V ′ and V ′ =v V
′ by Lemma 5.2.61

V = 〈a; 〈inputsa(M); ∆〉; tba〉 by inversion on size

V ′ = 〈b; 〈inputsb(M); ∆〉; tbb〉 by inversion on size

|∆| ` (measurea M) wellTyped by Lemma 5.2.44

∆ ` (measurea M) g Lemma 5.2.44

|∆| ` (measureb N) wellTyped Lemma 5.2.44

∆ ` (measureb N) g Lemma 5.2.44

|∆| ` (measureb N ≺ measurea M) wellTyped by rule

∆ ` (measureb N ≺ measurea M) g by rule

∆ ` (measureb N ≺ measurea M) valid by Definition 5.2.47

〈∆; measureb N〉 <o 〈∆; measurea M〉 by inversion on valid

V ′ <v V by rule

(∆ ` ? : bN) terminates by IH 1 on V’, s s s v, bN and bN

either failTerm(∆ ` ? : bN)

or (fillTerm(∆ ` ? : aN)
θ

=⇒ 〈∆′; M ; aN ′〉 and ∆′ ` aN ′ solved)

by inversion on terminates

assume failTerm(∆ ` ? : bN) Case 1

(∆ ` ? : bN) terminatesSatisfying 〈η; redInvb N〉 by rule
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fillTerm(∆ ` ? : bN)
θ

=⇒ 〈∆′; M ; bN ′〉 and ∆′ ` bN ′ solved Case 2

∆ ` θ : ∆′ and ` ∆′ raised

and θ(bN) = bN ′ and |∆| `M : aN ′ by Lemma 5.2.14

θN = N ′ by inversion on gsub application

|∆′| ` bN ′ : type and ∆′ ` bN ′ g

and ∆′ ` redInvb N ′ valid by inversion on solved

∆′ ` outputsb(N ′) g by Lemma 5.2.22

∆′ ` θ : η by Lemma 5.2.36

∆η = ∆ by Lemma 5.2.17

θ(redInvb N) = redInvb N ′ by Lemma 5.2.48

|∆′| ` (redInvb N ′) wellTyped by Lemma 5.2.48

∆′ ` (redInvb N ′) g by Lemma 5.2.48

(∆ ` ? : bN) terminatesSatisfying 〈η; redInvb N〉 by rule

�

The proof of Theorem 5.2.62 relies only on syntactically finitary methods, plus the

principle of well-founded induction over the ordering <v on the syntactic category V ,

which is defined in terms of well-founded ordering <o over the syntactic category O,

which is defined in terms of the well-founded ordering <s over the semantic domain

S. If <v has order-type α then <o has order type αω (it is the supremum of αn for

all n, where n is the length of O) and <v has order-type ω ·αω ·ω. If α = ω, as is the

case when S is intended to represent the subterm ordering, then this is equivalent to

the ordinal ωω+1. By the arguments in Chapter 3, this proof could be formalized in

PA3, but not PA2, which is essentially the best that can be done.
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Chapter 6

Conclusion and Related Work

The philosophical viewpoint behind the notion of syntactic finitism described in this

document is well precedented. With the possible exception of the status of lexico-

graphic orderings, the difference between finitism and syntactic finitism is more or less

than the difference between the domain in which they are applied—mathematics for

the former, programming languages research for the latter. The concept of finitism in

mathematics goes at least as far back as Kroenecker, and in the context of program-

ming languages research, strikingly many metatheorems have syntactically finitary

proofs, including most confluence and type safety results (see [LCH07] for a syntac-

tically finitary proof of type safety for a significant subset of Standard ML). The

success of the proof assistant Twelf, which we have argued is a formalization of the

notion of syntactic finitism, is itself a testament to the relevance of syntactic finitism

to the metatheory of programming languages.

We do not claim to be the first to characterize a logical relation in terms of the

provability of a logical predicate. Indeed the idea goes back to Tait’s original paper

[Tai67]. Nor are we the first to give a syntactically finitary proof of normalization

of the simply-typed lambda calculus: see [Abe08] for a particularly nice proof that
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bears some resemblance to our proof of Theorem 2.1.11, only without using a logical

relation. However, to our knowledge, the use of an assertion logic for the purpose of

giving a (syntactically) finitary account of logical relations proofs is novel.

Structural logical relations are especially well suited for being formalized in the

proofs as logic programs discipline, and make the proof-theoretic assumptions that

a particular proof is based on explicit. Proofs by logical relations are popular in

large part because they tend to scale well; structural logical relations appear to

preserve this property [SS08]. Formulating conventional logical relations proofs can

usually be accomplished in type theories with strong notion of inductive definition

(e.g. Coq or Lego) under the proofs as (functional) programs discipline [Alt93, BW97,

DX06], although these formalizations are not in the spirit of finitism. Moreover, such

proofs must implicitly assume the validity of the principles they are purporting to

investigate, which can, in the case of invalid reasoning principles (see [Coq86] for some

plausible examples), lead to seemingly-valid “consistency” proofs for inconsistent

formal systems. Often, conventional logical relations proofs make extensive use of

fully impredicative, second-order quantification, which is beyond the current state of

the art of ordinal analysis [Rat06].

Our application of the ideas and results from ordinal analysis (the branch of proof

theory created by Gentzen’s seminal work [Gen36, Gen38, Gen43]) to identify the

ordinal ωω
ω

with the concept of syntactic finitism is precedented by, and justified us-

ing, the classification of primitive recursive arithmetic and ordinal recursive functions

in terms of fragments of Peano arithmetic. This program was initiated by [Gen43],

and refined substantially by Parsons [Par66, Par70] and Mints [Min73a, Min73b]. A

research program similar in spirit has been carried out for fragments of, and exten-

sions to, Martin-Löfs, type theory [ML84], which is a formalization of mathematical

reasoning that that has been justified by extensive philosophical arguments, and
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serves as the foundation for the proof assistant Agda [Nor07], which is used by many

programming languages researchers. Overviews of this program can be found in

[Set08, Kah02].

We have demonstrated that lexicographic path induction is a suitable replacement

for transfinite induction in at least some settings. We are not the first to prove the

consistency of a logic using an ordering from term rewriting theory: [DP98, Bit99,

Urb01] show the strong normalization of cut-elimination for different formulations of

first-order logic using either the multiset path ordering or lexicographic path ordering.

However, because these results rely on proving termination of term rewriting systems,

they cannot be scaled to arithmetic (by Gödel’s second incompleteness theorem and

[Buc95]).

Several other logics from the programming languages literature formulate the

notion of induction defined in [ML71], which inspired the the rule hcl. The proofs

of consistency for FOλ∆N [MM00], Linc [MT03], and G [GMN08] all rely on (con-

ventional) logical relations; the proof of consistency for LKID [Bro06] uses model

theory. We are optimistic that many of these systems can be proven consistent using

finitary reasoning extended with lexicographic path induction. However, the proof

theoretic strength of Martin-Löf’s fulls intuitionistic theory of iterated inductive def-

initions exceeds that of the small Veblen ordinal ([ML71], section 10), and thus its

consistency cannot be proven by lexicographic path induction. We leave whether our

technique scales to any useful logics or type theories whose proof-theoretic ordinal is

greater than ε0, but smaller than the small Veblen ordinal, to future work.

Our interpretation of syntactically finitary proofs as total logic programs is well

precedented, most prominently by the proof assistant Twelf [PS99, HC05]. How-

ever, until now, a proof of the soundness of a mode/termination checker for logic

programming on LF terms has only been sketched [RP96, Roh96, Pie05]. We leave
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a syntactically finitary characterization of a coverage checking, such as [SP03], and

thus a complete account of proofs-as-logic-programs to future work. The proof assis-

tant Abella [Gac08, GMN08] allows for reasoning very much in the spirit of syntactic

finitism, using a variation of FOλ∆N [MM00] as a logical framework. In Abella, logic

programming is used to help facilitate finding metatheorems.

Our presentation of the semantics of logic programming differs sharply from the

accounts in [Pfe91, RP96, Roh96], where proof-search is expressed as a small-step

reduction on formulas in a unification logic, sometimes coupled with an explicit con-

tinuation stack. Our definition of proof search over LF terms is more reminiscent

of the account given in [PW90], although our treatment of logic variables differs

substantially. Our procedure is also somewhat similar to the procedure defined over

first-order Hereditary Harrop formulas [MNPS91] defined in [Nad93] [Cer98], al-

though their treatments do not deal with dependent types. As far as we are aware,

our use of mode information to specify the semantics of proof search over LF terms

is novel.

Syntactically finitary proofs can also be accounted for in a functional program-

ming paradigm. The system that is perhaps most philosophically compatible with

syntactic finitism is M+
2 of [Sch00], whose metatheoretic development focuses more

on coverage analysis than on termination. A somewhat more unconventional system

can be found in [DPS97], in which abstract syntax is by terms in a modal λ-calculus

with a primitive-recursion operator, although this system is unable to represent de-

pendencies.

Our work fits into the larger paradigm of programming using judgments and

derivations. Other work along these lines include [Mil92a, CU04] in the logic pro-

gramming paradigm, and [SPS04, Pos08, Pie08, LZH08] in the functional program-

ming paradigm, although the system described in [LZH08] is notable for its reliance

179



on infinitary rules.
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